import type { Point } from './Point.js' /** 二维向量 */ export class Vector2 { x: number y: number readonly isVector2: boolean = true constructor(x: number = 0, y: number = 0) { this.x = x this.y = y } get width(): number { return this.x } set width(value: number) { this.x = value } get height(): number { return this.y } set height(value: number) { this.y = value } set(x: number, y: number): Vector2 { this.x = x this.y = y return this } setScalar(scalar: number): Vector2 { this.x = scalar this.y = scalar return this } setX(x: number): Vector2 { this.x = x return this } setY(y: number): Vector2 { this.y = y return this } setComponent(index: number, value: number): Vector2 { switch (index) { case 0: this.x = value; break case 1: this.y = value; break default: throw new Error(`index is out of range: ${index}`) } return this } getComponent(index: number): number { switch (index) { case 0: return this.x case 1: return this.y default: throw new Error(`index is out of range: ${index}`) } } clone(): Vector2 { return new (this.constructor as any)().copy(this) } copy(v: Vector2): Vector2 { this.x = v.x this.y = v.y return this } add(v: Point): Vector2 { this.x += v.x this.y += v.y return this } addScalar(s: number): Vector2 { this.x += s this.y += s return this } addVectors(a: Vector2, b: Vector2): Vector2 { this.x = a.x + b.x this.y = a.y + b.y return this } addScaledVector(v: Vector2, s: number): Vector2 { this.x += v.x * s this.y += v.y * s return this } sub(v: Vector2): Vector2 { this.x -= v.x this.y -= v.y return this } subScalar(s: number): Vector2 { this.x -= s this.y -= s return this } subVectors(a: Vector2, b: Vector2): Vector2 { this.x = a.x - b.x this.y = a.y - b.y return this } multiply(v: Vector2): Vector2 { this.x *= v.x this.y *= v.y return this } multiplyScalar(scalar: number): Vector2 { if (Number.isFinite(scalar)) { this.x *= scalar this.y *= scalar } else { this.x = 0 this.y = 0 } return this } divide(v: Vector2): Vector2 { this.x /= v.x this.y /= v.y return this } divideScalar(scalar: number): Vector2 { return this.multiplyScalar(1 / scalar) } min(v: Point): Vector2 { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) return this } max(v: Point): Vector2 { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) return this } clamp(min: Vector2, max: Vector2): Vector2 { // This function assumes min < max, if this assumption isn't true it will not operate correctly this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) return this } private static clampScalar_min = new Vector2() private static clampScalar_max = new Vector2() clampScalar(minVal: number, maxVal: number): Vector2 { const min: Vector2 = Vector2.clampScalar_min.set(minVal, minVal) const max: Vector2 = Vector2.clampScalar_max.set(maxVal, maxVal) return this.clamp(min, max) } clampLength(min: number, max: number): Vector2 { const length: number = this.length() return this.multiplyScalar(Math.max(min, Math.min(max, length)) / length) } floor(): Vector2 { this.x = Math.floor(this.x) this.y = Math.floor(this.y) return this } ceil(): Vector2 { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) return this } round(): Vector2 { this.x = Math.round(this.x) this.y = Math.round(this.y) return this } roundToZero(): Vector2 { this.x = (this.x < 0) ? Math.ceil(this.x) : Math.floor(this.x) this.y = (this.y < 0) ? Math.ceil(this.y) : Math.floor(this.y) return this } negate(): Vector2 { this.x = -this.x this.y = -this.y return this } dot(v: Vector2): number { return this.x * v.x + this.y * v.y } lengthSq(): number { return this.x * this.x + this.y * this.y } length(): number { return Math.sqrt(this.x * this.x + this.y * this.y) } lengthManhattan(): number { return Math.abs(this.x) + Math.abs(this.y) } normalize(): Vector2 { return this.divideScalar(this.length()) } angle(): number { // computes the angle in radians with respect to the positive x-axis let angle: number = Math.atan2(this.y, this.x) if (angle < 0) angle += 2 * Math.PI return angle } distanceTo(v: Vector2): number { return Math.sqrt(this.distanceToSquared(v)) } distanceToSquared(v: Vector2): number { const dx: number = this.x - v.x; const dy: number = this.y - v.y return dx * dx + dy * dy } distanceToManhattan(v: Vector2): number { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) } setLength(length: number): Vector2 { return this.multiplyScalar(length / this.length()) } lerp(v: Vector2, alpha: number): Vector2 { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha return this } lerpVectors(v1: Vector2, v2: Vector2, alpha: number): Vector2 { return this.subVectors(v2, v1).multiplyScalar(alpha).add(v1) } equals(v: Vector2): boolean { return ((v.x === this.x) && (v.y === this.y)) } fromArray(array: Float32Array | number[], offset: number = 0): Vector2 { this.x = array[offset] this.y = array[offset + 1] return this } toArray(array: Float32Array | number[] = [], offset: number = 0): Float32Array | number[] { array[offset] = this.x array[offset + 1] = this.y return array } fromAttribute(attribute: any, index: number, offset: number = 0): Vector2 { index = index * attribute.itemSize + offset this.x = attribute.array[index] this.y = attribute.array[index + 1] return this } rotateAround(center: Vector2, angle: number): Vector2 { const c: number = Math.cos(angle); const s: number = Math.sin(angle) const x: number = this.x - center.x const y: number = this.y - center.y this.x = x * c - y * s + center.x this.y = x * s + y * c + center.y return this } }