This commit is contained in:
2025-04-10 16:37:20 +08:00
commit 0855f15a5c
25 changed files with 3456 additions and 0 deletions

11
src/App.vue Normal file
View File

@@ -0,0 +1,11 @@
<script setup lang="ts">
import MaterialView from './components/MaterialView.vue';
</script>
<template>
<MaterialView></MaterialView>
</template>
<style scoped>
</style>

1
src/assets/vue.svg Normal file
View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="iconify iconify--logos" width="37.07" height="36" preserveAspectRatio="xMidYMid meet" viewBox="0 0 256 198"><path fill="#41B883" d="M204.8 0H256L128 220.8L0 0h97.92L128 51.2L157.44 0h47.36Z"></path><path fill="#41B883" d="m0 0l128 220.8L256 0h-51.2L128 132.48L50.56 0H0Z"></path><path fill="#35495E" d="M50.56 0L128 133.12L204.8 0h-47.36L128 51.2L97.92 0H50.56Z"></path></svg>

After

Width:  |  Height:  |  Size: 496 B

View File

@@ -0,0 +1,251 @@
import * as THREE from 'three';
import { Vector3 } from 'three';
import { Viewer } from './Viewer';
import { KeyBoard, MouseKey } from './KeyEnum';
//相机控制状态
export enum CameraControlState
{
Null = 0, Pan = 1, Rotate = 2, Scale = 3
}
export class CameraControls
{
m_TouthTypeList = [CameraControlState.Rotate, CameraControlState.Scale, CameraControlState.Pan];
m_domElement: HTMLElement;//HTMLDocument
//起始点击
m_StartClickPoint: THREE.Vector3 = new THREE.Vector3();
m_EndClickPoint: THREE.Vector3 = new THREE.Vector3();
m_DollyStart: THREE.Vector2 = new THREE.Vector2();
m_DollyEnd: THREE.Vector2 = new THREE.Vector2();
m_KeyDown = new Map<KeyBoard, boolean>();
m_MouseDown = new Map<MouseKey, boolean>();
//状态
m_State: CameraControlState = CameraControlState.Null;
m_Viewer: Viewer;
//左键使用旋转
m_LeftUseRotate: boolean = true;
constructor(viewer: Viewer)
{
this.m_Viewer = viewer;
this.m_domElement = viewer.Renderer.domElement.parentElement;
this.RegisterEvent();
}
RegisterEvent()
{
if (this.m_domElement)
{
this.m_domElement.addEventListener("mousedown", this.onMouseDown, false)
this.m_domElement.addEventListener("mousemove", this.onMouseMove, false)
this.m_domElement.addEventListener("mouseup", this.onMouseUp, false)
window.addEventListener("keydown", this.onKeyDown, false);
window.addEventListener("keyup", this.onKeyUp, false);
this.m_domElement.addEventListener('wheel', this.onMouseWheel, false);
this.m_domElement.addEventListener('touchstart', this.onTouchStart, false);
this.m_domElement.addEventListener('touchend', this.onTouchEnd, false);
this.m_domElement.addEventListener('touchmove', this.onTouchMove, false);
window.addEventListener("blur", this.onBlur, false);
}
}
/**
* 窗体失去焦点时.
* @memberof CameraControls
*/
onBlur = () =>
{
this.m_KeyDown.clear();
this.m_MouseDown.clear();
}
//触屏开始事件
onTouchStart = (event: TouchEvent) =>
{
this.m_Viewer.UpdateLockTarget();
this.m_StartClickPoint.set(event.touches[0].pageX, event.touches[0].pageY, 0);
if (event.touches.length < 4)
{
if (event.touches.length == 2)
{
var dx = event.touches[0].pageX - event.touches[1].pageX;
var dy = event.touches[0].pageY - event.touches[1].pageY;
var distance = Math.sqrt(dx * dx + dy * dy);
this.m_DollyStart.set(0, distance);
}
this.m_State = this.m_TouthTypeList[event.touches.length - 1];
}
}
onTouchEnd = (event: TouchEvent) =>
{
this.m_State = CameraControlState.Null;
}
onTouchMove = (event: TouchEvent) =>
{
event.preventDefault();
event.stopPropagation();
this.m_EndClickPoint.set(event.touches[0].pageX, event.touches[0].pageY, 0);
let vec = this.m_EndClickPoint.clone().sub(this.m_StartClickPoint);
switch (this.m_State)
{
case CameraControlState.Pan:
{
this.m_Viewer.Pan(vec);
break;
}
case CameraControlState.Scale:
{
var dx = event.touches[0].pageX - event.touches[1].pageX;
var dy = event.touches[0].pageY - event.touches[1].pageY;
var distance = Math.sqrt(dx * dx + dy * dy);
this.m_DollyEnd.set(0, distance);
if (distance > this.m_DollyStart.y)
{
this.m_Viewer.Zoom(0.95);
}
else
{
this.m_Viewer.Zoom(1.05)
}
this.m_DollyStart.copy(this.m_DollyEnd);
break;
}
case CameraControlState.Rotate:
{
this.m_Viewer.Rotate(vec.multiplyScalar(2));
break;
}
}
this.m_StartClickPoint.copy(this.m_EndClickPoint);
this.m_Viewer.UpdateRender();
}
beginRotate()
{
this.m_State = CameraControlState.Rotate;
this.m_Viewer.UpdateLockTarget();
}
//最后一次按中键的时间
lastMiddleClickTime = 0;
//鼠标
onMouseDown = (event: MouseEvent) =>
{
event.preventDefault();
let key: MouseKey = event.button;
this.m_MouseDown.set(key, true);
this.m_StartClickPoint.set(event.offsetX, event.offsetY, 0);
switch (key)
{
case MouseKey.Left:
{
if (this.m_LeftUseRotate)
{
this.beginRotate();
}
break;
}
case MouseKey.Middle:
{
let curTime = Date.now();
let t = curTime - this.lastMiddleClickTime;
this.lastMiddleClickTime = curTime;
if (t < 350)
{
this.m_Viewer.ZoomAll();
return;
}
if (this.m_KeyDown.get(KeyBoard.Control))
{
this.beginRotate();
}
else
{
this.m_State = CameraControlState.Pan;
}
break;
}
case MouseKey.Right:
{
break;
}
}
}
onMouseUp = (event: MouseEvent) =>
{
event.preventDefault();
this.m_State = CameraControlState.Null;
this.m_MouseDown.set(event.button, false);
}
onMouseMove = (event: MouseEvent) =>
{
event.preventDefault();
this.m_EndClickPoint.set(event.offsetX, event.offsetY, 0);
let changeVec = this.m_EndClickPoint.clone().sub(this.m_StartClickPoint);
this.m_StartClickPoint.copy(this.m_EndClickPoint);
if (
(this.m_LeftUseRotate ||
(this.m_KeyDown.get(KeyBoard.Control))
)
&& this.m_State == CameraControlState.Rotate
)
{
this.m_Viewer.Rotate(changeVec);
}
switch (this.m_State)
{
case CameraControlState.Pan:
{
this.m_Viewer.Pan(changeVec);
break;
}
case CameraControlState.Rotate:
{
break;
}
case CameraControlState.Scale:
{
break;
}
}
}
/**
* 鼠标滚轮事件
*
* @memberof CameraControls
*/
onMouseWheel = (event: WheelEvent) =>
{
event.stopPropagation();
let pt = new THREE.Vector3(event.offsetX, event.offsetY, 0);
this.m_Viewer.ScreenToWorld(pt, new Vector3().setFromMatrixColumn(this.m_Viewer.m_Camera.Camera.matrixWorld, 2));
if (event.deltaY < 0)
{
this.m_Viewer.Zoom(0.6, pt);
}
else if (event.deltaY > 0)
{
this.m_Viewer.Zoom(1.4, pt);
}
}
//按键
onKeyDown = (event: KeyboardEvent) =>
{
this.m_KeyDown.set(event.keyCode, true);
}
onKeyUp = (event: KeyboardEvent) =>
{
this.m_KeyDown.set(event.keyCode, false);
}
}

290
src/common/GeUtils.ts Normal file
View File

@@ -0,0 +1,290 @@
import { Box3, Geometry, Line, Matrix4, Mesh, Object3D, Vector2, Vector3, type Vector } from 'three';
import { Matrix2 } from './Matrix2';
export const cZeroVec = new Vector3();
export const cXAxis = new Vector3(1, 0, 0);
export const cYAxis = new Vector3(0, 1, 0);
export const cZAxis = new Vector3(0, 0, 1);
/**
* 旋转一个点,旋转中心在原点
*
* @export
* @param {Vector3} pt 点
* @param {number} ang 角度.
* @returns {Vector3} 返回pt不拷贝.
*/
export function rotatePoint(pt: Vector3, ang: number): Vector3
{
new Matrix2().setRotate(ang).applyVector(pt);
return pt;
}
export function equaln(v1: number, v2: number, fuzz = 1e-3)
{
return Math.abs(v1 - v2) < fuzz;
}
export function equalv3(v1: Vector3, v2: Vector3, fuzz = 1e-8)
{
return equaln(v1.x, v2.x, fuzz) && equaln(v1.y, v2.y, fuzz) && equaln(v1.z, v2.z, fuzz);
}
export function equal<T extends Vector>(v1: T, v2: T)
{
return v1.distanceToSquared(v2) < 1e-8;
}
export function fixAngle(an: number, fixAngle: number, fuzz: number = 0.1)
{
if (an < 0)
an += Math.PI * 2;
an += fuzz;
let rem = an % fixAngle;
if (rem < fuzz * 2)
{
an -= rem;
}
else
{
an -= fuzz;
}
return an;
}
/**
* 按照极坐标的方式移动一个点
*
* @export
* @template
* @param {T} v 向量(2d,3d)
* @param {number} an 角度
* @param {number} dis 距离
* @returns {T}
*/
export function polar<T extends Vector2 | Vector3>(v: T, an: number, dis: number): T
{
v.x += Math.cos(an) * dis;
v.y += Math.sin(an) * dis;
return v;
}
export function angle(v: Vector3 | Vector2)
{
if (equaln(v.y, 0) && v.x > 0)
return 0;
let angle = Math.atan2(v.y, v.x);
if (angle < 0) angle += Math.PI * 2;
return angle;
}
/**
* 求两个向量的夹角,顺时针为负,逆时针为正
*
* @param {Vector3} v1
* @param {Vector3} v2
* @param {Vector3} [ref] 参考向量,如果为世界坐标系则为0,0,1
* @returns
*/
export function angleTo(v1: Vector3, v2: Vector3, ref: Vector3 = new Vector3(0, 0, 1))
{
if (!ref.equals(new Vector3(0, 0, 1)))
{
//任意轴坐标系. 使用相机的构造矩阵.
ref.multiplyScalar(-1);
let up = getLoocAtUpVec(ref);
let refOcs = new Matrix4();
refOcs.lookAt(cZeroVec, ref, up);
let refOcsInv = new Matrix4().getInverse(refOcs);
v1.applyMatrix4(refOcsInv);
v2.applyMatrix4(refOcsInv);
v1.z = 0;
v2.z = 0;
}
if (v1.equals(cZeroVec) || v2.equals(cZeroVec))
return 0;
let cv = new Vector3().crossVectors(v1, v2).normalize();
return cv.z === 0 ? v1.angleTo(v2) : v1.angleTo(v2) * cv.z;
}
export function getLoocAtUpVec(dir: Vector3): Vector3
{
if (dir.equals(cZeroVec))
{
throw ("zero vector");
}
let norm = dir.clone().normalize();
if (norm.equals(cZAxis))
{
return new Vector3(0, 1, 0);
}
else if (norm.equals(cZAxis.clone().negate()))
{
return new Vector3(0, -1, 0);
}
else
{
let xv: Vector3 = new Vector3();
xv.crossVectors(cZAxis, norm);
let up = new Vector3();
up.crossVectors(norm, xv);
return up;
}
}
export function createLookAtMat4(dir: Vector3): Matrix4
{
let up = getLoocAtUpVec(dir);
let mat = new Matrix4();
mat.lookAt(cZeroVec, dir, up);
return mat;
}
export function isParallelTo(v1: Vector3, v2: Vector3)
{
return v1.clone().cross(v2).lengthSq() < 1e-9;
}
export function ptToString(v: Vector3, fractionDigits: number = 3): string
{
return v.toArray().map(o =>
{
return o.toFixed(fractionDigits);
}).join(",");
}
export function midPoint(v1: Vector3, v2: Vector3): Vector3
{
return v1.clone().add(v2).multiplyScalar(0.5);
}
export function midPoint2(v1: Vector2, v2: Vector2): Vector2
{
return v1.clone().add(v2).multiplyScalar(0.5);
}
export function midPtCir(v1: Vector3, v2: Vector3)
{
let baseline = new Vector3(1, 0, 0);
let outLine = v2.clone().sub(v1);
let ang = angleTo(baseline, outLine) / 2;
let midLine = rotatePoint(outLine, -ang);
return v1.clone().add(midLine);
}
/**
* 获得Three对象的包围盒.
* @param obj
* @param [updateMatrix] 是否应该更新对象矩阵
* @returns box
*/
export function GetBox(obj: Object3D, updateMatrix?: boolean): Box3
{
let box = new Box3();
if (updateMatrix) obj.updateMatrixWorld(false);
if (!obj.visible) return box;
obj.traverse(o =>
{
//因为实体Erase时,实体仍然保存在Scene中.
if (o.visible === false)
return;
//@ts-ignore
let geo = o.geometry as BufferGeometry;
if (geo)
{
if (!geo.boundingBox)
geo.computeBoundingBox();
box.union(geo.boundingBox.clone().applyMatrix4(o.matrixWorld));
}
});
return box;
}
export function GetBoxArr(arr: Array<Object3D>): Box3
{
let box = new Box3();
for (let o of arr)
{
let b = GetBox(o);
if (!b.isEmpty())
box.union(b);
}
return box;
}
export function MoveMatrix(v: Vector3): Matrix4
{
let mat = new Matrix4();
mat.makeTranslation(v.x, v.y, v.z);
return mat;
}
export function getProjectDist(v1: Vector3, v2: Vector3)
{
let ang = v1.angleTo(v2);
let dist = v1.length();
return {
h: dist * Math.cos(ang),
v: dist * Math.sin(ang)
};
}
//获得输入点在2线组成的4个区间的位置
export function getPtPostion(sp: Vector3, ep: Vector3, c: Vector3, inPt: Vector3)
{
let l1 = sp.clone().sub(c);
let l2 = ep.clone().sub(c);
let l3 = l1.clone().negate();
let l4 = l2.clone().negate();
let inputLine = inPt.clone().sub(c);
let ang1 = angleTo(l1, l2);
let ang2 = Math.PI;
let ang3 = ang2 + Math.abs(ang1);
let inputAng = angleTo(l1, inputLine);
if (ang1 * inputAng < 0)
{
inputAng = (Math.PI * 2 - Math.abs(inputAng));
}
ang1 = Math.abs(ang1);
inputAng = Math.abs(inputAng);
if (inputAng <= ang1)
{
return { sp, ep };
} else if (inputAng > ang1 && inputAng <= ang2)
{
return { sp: c.clone().add(l3), ep };
} else if (inputAng > ang2 && inputAng <= ang3)
{
return { sp: c.clone().add(l3), ep: c.clone().add(l4) };
} else
{
return { sp, ep: c.clone().add(l4) };
}
}
export function angleAndX(v: Vector3 | Vector2)
{
return v.x ? Math.atan(v.y / v.x) : Math.PI / 2;
}
/**
* 将角度调整为0-2pi之间
*
* @export
* @param {number} an
*/
export function angleTo2Pi(an: number)
{
an = an % (Math.PI * 2);
if (an < 0) an += Math.PI * 2;
return an;
}
export function updateGeometry(l: Line | Mesh, geometry: Geometry)
{
let geo = l.geometry as Geometry;
geo.dispose();
l.geometry = geometry;
geometry.verticesNeedUpdate = true;
geometry.computeBoundingSphere();
}

164
src/common/KeyEnum.ts Normal file
View File

@@ -0,0 +1,164 @@
//鼠标类型
export enum MouseKey
{
Left = 0,
Middle = 1,
Right = 2,
}
export enum KeyBoard
{
// 数字
Digit1 = 49,
Digit2 = 50,
Digit3 = 51,
Digit4 = 52,
Digit5 = 53,
Digit6 = 54,
Digit7 = 55,
Digit8 = 56,
Digit9 = 57,
Digit0 = 58,
// 字母
KeyA = 65,
KeyB = 66,
KeyC = 67,
KeyD = 68,
KeyE = 69,
KeyF = 70,
KeyG = 71,
KeyH = 72,
KeyI = 73,
KeyJ = 74,
KeyK = 75,
KeyL = 76,
KeyM = 77,
KeyN = 78,
KeyO = 79,
KeyP = 80,
KeyQ = 81,
KeyR = 82,
KeyS = 83,
KeyT = 84,
KeyU = 85,
KeyV = 86,
KeyW = 87,
KeyX = 88,
KeyY = 89,
KeyZ = 90,
// 符号
/**
* 逗号
*/
Comma = 188,
CommaChrome = 229,
/**
* 句号
*/
Period = 190,
/**
* 分号
*/
Semicolon = 186,
/**
* 引号
*/
Quote = 222,
/**
* 左括号
*/
BracketLeft = 219,
/**
* 右括号
*/
BracketRight = 220,
/**
* 反引号
*/
Backquote = 192,
/**
* 反斜杠
*/
Backslash = 220,
/**
* 减号
*/
Minus = 189,
/**
* 等号
*/
Equal = 187,
IntlRo = 193,
IntlYen = 255,
// 功能键
Alt = 18,
/**
* 大写锁定
*/
CapsLock = 20,
Control = 17,
/**
* win左键
*/
OSLeft = 91,
/**
* win右键
*/
OSRight = 92,
Shift = 16,
ContextMenu = 93,
Enter = 13,
Space = 32,
Backspace = 8,
Tab = 9,
Delete = 46,
End = 35,
Home = 36,
Insert = 45,
PageDown = 34,
PageUp = 33,
ArrowDown = 40,
ArrowLeft = 37,
ArrowRight = 39,
ArrowUp = 38,
Escape = 27,
PrintScreen = 44,
ScrollLock = 145,
Pause = 19,
// F数字
F1 = 112,
F2 = 113,
F3 = 114,
F5 = 116,
F6 = 117,
F7 = 118,
F8 = 119,
F9 = 120,
F10 = 121,
F11 = 122,
F12 = 123,
//数字键盘
NumLock = 114,
Numpad0 = 96,
Numpad1 = 97,
Numpad2 = 98,
Numpad3 = 99,
Numpad4 = 100,
Numpad5 = 101,
Numpad6 = 102,
Numpad7 = 103,
Numpad8 = 104,
Numpad9 = 105,
NumpadAdd = 107,
NumpadDivide = 111,
NumpadEqual = 12,
NumpadMultiply = 106,
NumpadSubtract = 109,
NumpadDot = 110,
NumpadDot1 = 190
}

View File

@@ -0,0 +1,236 @@
import { AmbientLight, BoxBufferGeometry, BufferGeometry, ConeBufferGeometry, CubeRefractionMapping, CubeTextureLoader, Geometry, Mesh, MeshPhysicalMaterial, Object3D, SphereBufferGeometry, sRGBEncoding, Texture, TorusBufferGeometry, TorusKnotBufferGeometry } from 'three';
import { Singleton } from './Singleton';
import { Viewer } from './Viewer';
import { PMREMGenerator3 } from './PMREMGenerator2';
import type { PhysicalMaterialRecord, TextureTableRecord } from 'webcad_ue4_api';
import { MaterialEditorCamerControl } from './MaterialMouseControl';
import { ref } from 'vue';
async function textureRenderUpdate(textureRecord:TextureTableRecord){
const texture = textureRecord['texture'] as Texture;
texture.wrapS = textureRecord.WrapS;
texture.wrapT = textureRecord.WrapT;
texture.anisotropy = 16;
texture.rotation = textureRecord.rotation;
texture.repeat.set(textureRecord.repeatX, textureRecord.repeatY);
texture.offset.set(textureRecord.moveX, textureRecord.moveY);
texture.needsUpdate = true;
// for (let f of this.waits)
// f();
// this.waits.length = 0;
//
// this.AsyncUpdated();
}
/**
* 材质编辑器
*/
export class MaterialEditor extends Singleton
{
Geometrys: Map<string, Geometry | BufferGeometry>;
CurGeometryName = ref("球");
Canvas: HTMLElement;
ShowObject: Object3D;
ShowMesh: Mesh;
Viewer: Viewer;
private _MeshMaterial: MeshPhysicalMaterial = new MeshPhysicalMaterial({});
//构造
private constructor()
{
super();
this.initGeometrys();
this.LoadDefaultExr();
this.LoadMetalEnv();
}
initGeometrys()
{
this.Geometrys = new Map<string, Geometry | BufferGeometry>(
[
["球", new SphereBufferGeometry(1000, 32, 32)],
["圆环", new TorusBufferGeometry(0.8 * 1e3, 0.4 * 1e3, 32, 64)],
["立方体", new BoxBufferGeometry(1e3, 1e3, 1e3, 1, 1, 1)],
["环面纽结", new TorusKnotBufferGeometry(0.7 * 1e3, 0.3 * 1e3, 128, 64)],
["圆锥体", new ConeBufferGeometry(1 * 1e3, 2 * 1e3, 32)],
// ["球(多面)", new SphereBufferGeometry(1 * 1e3, 64, 64)],
// ["立方体(多面)", new BoxBufferGeometry(1 * 1e3, 1 * 1e3, 1 * 1e3, 128, 128, 128)]
]
);
}
initViewer()
{
if (!this.Viewer)
{
this.Viewer = new Viewer(this.Canvas);
// this.Viewer.PreViewer.Cursor.CursorObject.visible = false;
// this.Viewer.CameraCtrl.CameraType = CameraType.PerspectiveCamera;
// this.Viewer.UsePass = false;
this.initScene();
new MaterialEditorCamerControl(this.Viewer);
}
else
{
this.Canvas.appendChild(this.Viewer.Renderer.domElement);
}
}
SetViewer(canvas: HTMLElement)
{
this.Canvas = canvas;
this.initViewer();
this.CurGeometryName.value = "球";
}
initScene()
{
let scene = this.Viewer.Scene;
this.ShowObject = new Object3D();
let geo = this.Geometrys.get(this.CurGeometryName.value);
this.ShowMesh = new Mesh(geo, this._MeshMaterial);
this.ShowMesh.scale.set(1000, 1000, 1000);
this.ShowObject.add(this.ShowMesh);
scene.add(this.ShowObject);
// let remove = autorun(() =>
// {
// let geo = this.Geometrys.get(this.CurGeometryName.get());
// if (geo)
// {
// this.ShowMesh.geometry = geo;
// this.Viewer.UpdateRender();
// }
// });
// end(this as MaterialEditor, this.dispose, remove);
//环境光
let ambient = new AmbientLight();
ambient.intensity = 0.7;
scene.add(ambient);
}
metaTexture: Texture;
metaPromise: Promise<Texture>;
async LoadMetalEnv(): Promise<Texture>
{
if (this.metaTexture) return this.metaTexture;
if (this.metaPromise) return this.metaPromise;
return new Promise((res, rej) =>
{
let urls = ['right.webp', 'left.webp', 'top.webp', 'bottom.webp', 'front.webp', 'back.webp'];
new CubeTextureLoader().setPath('https://cdn.cfcad.cn/t/house/')
.load(urls, (t) =>
{
t.encoding = sRGBEncoding;
t.mapping = CubeRefractionMapping;
let pmremGenerator = new PMREMGenerator3(this.Viewer.Renderer);
let ldrCubeRenderTarget = pmremGenerator.fromCubemap(t);
this.metaTexture = ldrCubeRenderTarget.texture;
res(this.metaTexture);
this.Viewer.Scene.background = this.metaTexture;
// this.Viewer.Scene.background = new Color(255,0,0);
this.Viewer.UpdateRender();
});
});
}
exrPromise: Promise<Texture>;
exrTexture: Texture;
async LoadDefaultExr(): Promise<Texture>
{
if (this.exrTexture) return this.exrTexture;
if (this.exrPromise) return this.exrPromise;
this.exrPromise = new Promise<Texture>((res, rej) =>
{
let urls = ['right.webp', 'left.webp', 'top.webp', 'bottom.webp', 'front.webp', 'back.webp'];
new CubeTextureLoader().setPath('https://cdn.cfcad.cn/t/house_gray/')
.load(urls, (t) =>
{
t.encoding = sRGBEncoding;
t.mapping = CubeRefractionMapping;
let pmremGenerator = new PMREMGenerator3(this.Viewer.Renderer);
let target = pmremGenerator.fromCubemap(t);
this.exrTexture = target.texture;
res(this.exrTexture);
this.Viewer.UpdateRender();
});
});
return this.exrPromise;
}
private Material: PhysicalMaterialRecord;
setMaterial(mat: PhysicalMaterialRecord)
{
this.Material = mat;
this._MeshMaterial.copy(mat.Material);
let mtl = this._MeshMaterial;
if (mtl.metalness > 0.8)
this.LoadMetalEnv().then(env =>
{
mtl.envMap = env;
mtl.needsUpdate = true;
});
else
this.LoadDefaultExr().then(exr =>
{
mtl.envMap = exr;
mtl.needsUpdate = true;
});
this.Update();
}
dispose()
{
}
async Update()
{
let mat = this.ShowMesh.material as MeshPhysicalMaterial;
if (this.Material.map && this.Material.map.Object && this.Material.useMap)
{
let texture = this.Material.map.Object as TextureTableRecord;
await textureRenderUpdate(texture);
}
if (this.Material.bumpMap && this.Material.bumpMap.Object)
{
let texture = this.Material.bumpMap.Object as TextureTableRecord;
await textureRenderUpdate(texture);
}
if (this.Material.roughnessMap && this.Material.roughnessMap.Object)
{
let texture = this.Material.roughnessMap.Object as TextureTableRecord;
await textureRenderUpdate(texture);
}
mat.needsUpdate = true;
this._MeshMaterial.copy(this.Material.Material);
let mtl = this._MeshMaterial;
if (mtl.metalness > 0.8)
this.LoadMetalEnv().then(env =>
{
mtl.envMap = env;
mtl.needsUpdate = true;
});
else
this.LoadDefaultExr().then(exr =>
{
mtl.envMap = exr;
mtl.needsUpdate = true;
});
this.Viewer.UpdateRender();
}
}

View File

@@ -0,0 +1,85 @@
import { Vector3 } from 'three';
import type { Viewer } from './Viewer';
/**
* 材质编辑器的场景鼠标控制.
*/
export class MaterialEditorCamerControl
{
private Viewer: Viewer;
//State.
private _MouseIsDown: boolean = false;
private _StartPoint: Vector3 = new Vector3();
private _EndPoint = new Vector3();
private pointId: number;
constructor(view: Viewer)
{
this.Viewer = view;
this.initMouseControl();
}
initMouseControl()
{
let el = this.Viewer.Renderer.domElement;
el.addEventListener("pointerdown", (e) => { this.pointId = e.pointerId; }, false);
el.addEventListener("mousedown", this.onMouseDown, false);
el.addEventListener("mousemove", this.onMouseMove, false);
el.addEventListener("mouseup", this.onMouseUp, false);
el.addEventListener('wheel', this.onMouseWheel, false);
}
onMouseDown = (event: MouseEvent) =>
{
this.requestPointerLock();
this._MouseIsDown = true;
this._StartPoint.set(event.offsetX, event.offsetY, 0);
};
onMouseUp = (event: MouseEvent) =>
{
this._MouseIsDown = false;
this.exitPointerLock();
};
onMouseMove = (event: MouseEvent) =>
{
event.preventDefault();
if (this._MouseIsDown)
{
this._EndPoint.set(event.offsetX, event.offsetY, 0);
let changeVec: Vector3 = new Vector3();
changeVec.subVectors(this._EndPoint, this._StartPoint);
this._StartPoint.copy(this._EndPoint);
this.Viewer.Rotate(changeVec);
}
};
onMouseWheel = (event: WheelEvent) =>
{
if (event.deltaY < 0)
{
this.Viewer.Zoom(0.6);
}
else if (event.deltaY > 0)
{
this.Viewer.Zoom(1.4);
}
};
requestPointerLock()
{
if (this.Viewer.Renderer.domElement.setPointerCapture)
this.Viewer.Renderer.domElement.setPointerCapture(this.pointId);
}
exitPointerLock()
{
if (this.Viewer.Renderer.domElement.releasePointerCapture && this.pointId !== undefined)
{
try
{
this.Viewer.Renderer.domElement.releasePointerCapture(this.pointId);
}
catch (error) { }
}
}
}

33
src/common/Matrix2.ts Normal file
View File

@@ -0,0 +1,33 @@
import { Vector2, Vector3 } from "three";
export class Matrix2
{
private el = [1, 0, 0, 1];
set(n11: number, n12: number, n21: number, n22: number)
{
let te = this.el;
te[0] = n11; te[1] = n21;
te[2] = n12; te[3] = n22;
return this;
}
applyVector(vec: Vector2 | Vector3)
{
let x = vec.x, y = vec.y;
let e = this.el;
vec.x = e[0] * x + e[2] * y;
vec.y = e[1] * x + e[3] * y;
return this;
}
setRotate(theta: number): Matrix2
{
// let el = this.el;
let c = Math.cos(theta), s = Math.sin(theta);
this.set(c, -s,
s, c);
return this;
}
}

View File

@@ -0,0 +1,997 @@
import { BufferAttribute, BufferGeometry, CubeUVReflectionMapping, GammaEncoding, LinearEncoding, Mesh, NearestFilter, NoBlending, NoToneMapping, OrthographicCamera, PerspectiveCamera, RawShaderMaterial, RGBDEncoding, RGBEEncoding, RGBEFormat, RGBM16Encoding, RGBM7Encoding, sRGBEncoding, UnsignedByteType, Vector2, Vector3, WebGLRenderer, WebGLRenderTarget } from "three";
const LOD_MIN = 4;
const LOD_MAX = 8;
const SIZE_MAX = Math.pow(2, LOD_MAX);
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const ENCODINGS = {
[LinearEncoding]: 0,
[sRGBEncoding]: 1,
[RGBEEncoding]: 2,
[RGBM7Encoding]: 3,
[RGBM16Encoding]: 4,
[RGBDEncoding]: 5,
[GammaEncoding]: 6
};
//@ts-ignore
const _flatCamera = /*@__PURE__*/ new OrthographicCamera();
const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes();
let _oldTarget = null;
// Golden Ratio
const PHI = (1 + Math.sqrt(5)) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
/*@__PURE__*/ new Vector3(1, 1, 1),
/*@__PURE__*/ new Vector3(- 1, 1, 1),
/*@__PURE__*/ new Vector3(1, 1, - 1),
/*@__PURE__*/ new Vector3(- 1, 1, - 1),
/*@__PURE__*/ new Vector3(0, PHI, INV_PHI),
/*@__PURE__*/ new Vector3(0, PHI, - INV_PHI),
/*@__PURE__*/ new Vector3(INV_PHI, 0, PHI),
/*@__PURE__*/ new Vector3(- INV_PHI, 0, PHI),
/*@__PURE__*/ new Vector3(PHI, INV_PHI, 0),
/*@__PURE__*/ new Vector3(- PHI, INV_PHI, 0)];
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*/
export class PMREMGenerator3
{
_renderer: WebGLRenderer;
_pingPongRenderTarget: any;
_blurMaterial: RawShaderMaterial;
_equirectShader: any;
_cubemapShader: any;
constructor(renderer: WebGLRenderer)
{
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
this._equirectShader = null;
this._cubemapShader = null;
this._compileMaterial(this._blurMaterial);
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene(scene, sigma = 0, near = 0.1, far = 100)
{
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets();
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
if (sigma > 0)
{
this._blur(cubeUVRenderTarget, 0, 0, sigma);
}
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular(equirectangular)
{
return this._fromTexture(equirectangular);
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap(cubemap)
{
return this._fromTexture(cubemap);
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader()
{
if (this._cubemapShader === null)
{
this._cubemapShader = _getCubemapShader();
this._compileMaterial(this._cubemapShader);
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader()
{
if (this._equirectShader === null)
{
this._equirectShader = _getEquirectShader();
this._compileMaterial(this._equirectShader);
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose()
{
this._blurMaterial.dispose();
if (this._cubemapShader !== null) this._cubemapShader.dispose();
if (this._equirectShader !== null) this._equirectShader.dispose();
for (let i = 0; i < _lodPlanes.length; i++)
{
_lodPlanes[i].dispose();
}
}
// private interface
_cleanup(outputTarget)
{
this._pingPongRenderTarget.dispose();
this._renderer.setRenderTarget(_oldTarget);
outputTarget.scissorTest = false;
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
}
_fromTexture(texture)
{
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets(texture);
this._textureToCubeUV(texture, cubeUVRenderTarget);
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
_allocateTargets(texture?)
{ // warning: null texture is valid
const params = {
magFilter: NearestFilter,
minFilter: NearestFilter,
generateMipmaps: false,
type: UnsignedByteType,
format: RGBEFormat,
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget(params);
cubeUVRenderTarget.depthBuffer = texture ? false : true;
this._pingPongRenderTarget = _createRenderTarget(params);
return cubeUVRenderTarget;
}
_compileMaterial(material)
{
const tmpMesh = new Mesh(_lodPlanes[0], material);
this._renderer.compile(tmpMesh, _flatCamera);
}
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget)
{
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
const upSign = [1, - 1, 1, 1, 1, 1];
const forwardSign = [1, 1, 1, - 1, - 1, - 1];
const renderer = this._renderer;
const outputEncoding = renderer.outputEncoding;
const toneMapping = renderer.toneMapping;
const clearColor = renderer.getClearColor();
const clearAlpha = renderer.getClearAlpha();
renderer.toneMapping = NoToneMapping;
renderer.outputEncoding = LinearEncoding;
let background = scene.background;
if (background && background.isColor)
{
background.convertSRGBToLinear();
// Convert linear to RGBE
const maxComponent = Math.max(background.r, background.g, background.b);
const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), - 128.0), 127.0);
background = background.multiplyScalar(Math.pow(2.0, - fExp));
const alpha = (fExp + 128.0) / 255.0;
renderer.setClearColor(background, alpha);
scene.background = null;
}
for (let i = 0; i < 6; i++)
{
const col = i % 3;
if (col == 0)
{
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(forwardSign[i], 0, 0);
} else if (col == 1)
{
cubeCamera.up.set(0, 0, upSign[i]);
cubeCamera.lookAt(0, forwardSign[i], 0);
} else
{
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(0, 0, forwardSign[i]);
}
_setViewport(cubeUVRenderTarget,
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
renderer.render(scene, cubeCamera);
}
renderer.toneMapping = toneMapping;
renderer.outputEncoding = outputEncoding;
renderer.setClearColor(clearColor, clearAlpha);
}
_textureToCubeUV(texture, cubeUVRenderTarget)
{
const renderer = this._renderer;
if (texture.isCubeTexture)
{
if (this._cubemapShader == null)
{
this._cubemapShader = _getCubemapShader();
}
} else
{
if (this._equirectShader == null)
{
this._equirectShader = _getEquirectShader();
}
}
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
const mesh = new Mesh(_lodPlanes[0], material);
const uniforms = material.uniforms;
uniforms['envMap'].value = texture;
if (!texture.isCubeTexture)
{
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
}
uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
renderer.render(mesh, _flatCamera);
}
_applyPMREM(cubeUVRenderTarget)
{
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
for (let i = 1; i < TOTAL_LODS; i++)
{
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis?)
{
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis);
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis);
}
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis)
{
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if (direction !== 'latitudinal' && direction !== 'longitudinal')
{
console.error(
'blur direction must be either latitudinal or longitudinal!');
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
const blurUniforms = blurMaterial.uniforms;
const pixels = _sizeLods[lodIn] - 1;
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
if (samples > MAX_SAMPLES)
{
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
}
const weights = [];
let sum = 0;
for (let i = 0; i < MAX_SAMPLES; ++i)
{
const x = i / sigmaPixels;
const weight = Math.exp(- x * x / 2);
weights.push(weight);
if (i == 0)
{
sum += weight;
} else if (i < samples)
{
sum += 2 * weight;
}
}
for (let i = 0; i < weights.length; i++)
{
weights[i] = weights[i] / sum;
}
blurUniforms['envMap'].value = targetIn.texture;
blurUniforms['samples'].value = samples;
blurUniforms['weights'].value = weights;
blurUniforms['latitudinal'].value = direction === 'latitudinal';
if (poleAxis)
{
blurUniforms['poleAxis'].value = poleAxis;
}
blurUniforms['dTheta'].value = radiansPerPixel;
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
const outputSize = _sizeLods[lodOut];
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
renderer.setRenderTarget(targetOut);
renderer.render(blurMesh, _flatCamera);
}
}
function _isLDR(texture)
{
if (texture === undefined || texture.type !== UnsignedByteType) return false;
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
function _createPlanes()
{
const _lodPlanes = [];
const _sizeLods = [];
const _sigmas = [];
let lod = LOD_MAX;
for (let i = 0; i < TOTAL_LODS; i++)
{
const sizeLod = Math.pow(2, lod);
_sizeLods.push(sizeLod);
let sigma = 1.0 / sizeLod;
if (i > LOD_MAX - LOD_MIN)
{
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
} else if (i == 0)
{
sigma = 0;
}
_sigmas.push(sigma);
const texelSize = 1.0 / (sizeLod - 1);
const min = - texelSize / 2;
const max = 1 + texelSize / 2;
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array(positionSize * vertices * cubeFaces);
const uv = new Float32Array(uvSize * vertices * cubeFaces);
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
for (let face = 0; face < cubeFaces; face++)
{
const x = (face % 3) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
position.set(coordinates, positionSize * vertices * face);
uv.set(uv1, uvSize * vertices * face);
const fill = [face, face, face, face, face, face];
faceIndex.set(fill, faceIndexSize * vertices * face);
}
const planes = new BufferGeometry();
planes.setAttribute('position', new BufferAttribute(position, positionSize));
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
_lodPlanes.push(planes);
if (lod > LOD_MIN)
{
lod--;
}
}
return { _lodPlanes, _sizeLods, _sigmas };
}
function _createRenderTarget(params)
{
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport(target, x, y, width, height)
{
target.viewport.set(x, y, width, height);
target.scissor.set(x, y, width, height);
}
function _getBlurShader(maxSamples)
{
const weights = new Float32Array(maxSamples);
const poleAxis = new Vector3(0, 1, 0);
const shaderMaterial = new RawShaderMaterial({
name: 'SphericalGaussianBlur',
defines: { 'n': maxSamples },
uniforms: {
'envMap': { value: null },
'samples': { value: 1 },
'weights': { value: weights },
'latitudinal': { value: false },
'dTheta': { value: 0 },
'mipInt': { value: 0 },
'poleAxis': { value: poleAxis },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
${_getEncodings()}
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getEquirectShader()
{
const texelSize = new Vector2(1, 1);
const shaderMaterial = new RawShaderMaterial({
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': { value: null },
'texelSize': { value: texelSize },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform vec2 texelSize;
${_getEncodings()}
#include <common>
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
vec2 f = fract( uv / texelSize - 0.5 );
uv -= f * texelSize;
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x += texelSize.x;
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.y += texelSize.y;
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x -= texelSize.x;
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
vec3 tm = mix( tl, tr, f.x );
vec3 bm = mix( bl, br, f.x );
gl_FragColor.rgb = mix( tm, bm, f.y );
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCubemapShader()
{
const shaderMaterial = new RawShaderMaterial({
name: 'CubemapToCubeUV',
uniforms: {
'envMap': { value: null },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
${_getEncodings()}
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCommonVertexShader()
{
return /* glsl */`
precision mediump float;
precision mediump int;
attribute vec3 position;
attribute vec2 uv;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
// //从xz->z-up坐标系变换到 threejs坐标系
mat3 ro = mat3(
1.0, 0.0, 0.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0
);
vOutputDirection = ro * vOutputDirection;
gl_Position = vec4( position, 1.0 );
}
`;
}
function _getEncodings()
{
return /* glsl */`
uniform int inputEncoding;
uniform int outputEncoding;
#include <encodings_pars_fragment>
vec4 inputTexelToLinear( vec4 value ) {
if ( inputEncoding == 0 ) {
return value;
} else if ( inputEncoding == 1 ) {
return sRGBToLinear( value );
} else if ( inputEncoding == 2 ) {
return RGBEToLinear( value );
} else if ( inputEncoding == 3 ) {
return RGBMToLinear( value, 7.0 );
} else if ( inputEncoding == 4 ) {
return RGBMToLinear( value, 16.0 );
} else if ( inputEncoding == 5 ) {
return RGBDToLinear( value, 256.0 );
} else {
return GammaToLinear( value, 2.2 );
}
}
vec4 linearToOutputTexel( vec4 value ) {
if ( outputEncoding == 0 ) {
return value;
} else if ( outputEncoding == 1 ) {
return LinearTosRGB( value );
} else if ( outputEncoding == 2 ) {
return LinearToRGBE( value );
} else if ( outputEncoding == 3 ) {
return LinearToRGBM( value, 7.0 );
} else if ( outputEncoding == 4 ) {
return LinearToRGBM( value, 16.0 );
} else if ( outputEncoding == 5 ) {
return LinearToRGBD( value, 256.0 );
} else {
return LinearToGamma( value, 2.2 );
}
}
vec4 envMapTexelToLinear( vec4 color ) {
return inputTexelToLinear( color );
}
`;
}

46
src/common/PlaneExt.ts Normal file
View File

@@ -0,0 +1,46 @@
import * as THREE from 'three';
import { Vector3, Line3, Plane } from "three";
export class PlaneExt extends Plane
{
constructor(normal?: Vector3, constant?: number)
{
super(normal, constant);
}
intersectLine(line: Line3, optionalTarget?: Vector3, extendLine?: boolean): Vector3
{
let v1 = new Vector3();
let result = optionalTarget || new Vector3();
let direction = line.delta(v1);
let denominator = this.normal.dot(direction);
if (denominator === 0)
{
// line is coplanar, return origin
if (this.distanceToPoint(line.start) === 0)
{
return result.copy(line.start);
}
// Unsure if this is the correct method to handle this case.
return undefined;
}
let t = - (line.start.dot(this.normal) + this.constant) / denominator;
//If you not extendLine,check intersect point in Line
if (!extendLine && (t < 0 || t > 1))
{
return undefined;
}
return result.copy(direction).multiplyScalar(t).add(line.start);
}
intersectRay(ray: THREE.Ray, optionalTarget?: Vector3, extendLine?: boolean): Vector3
{
// 从射线初始位置
let line = new THREE.Line3(ray.origin.clone(), ray.origin.clone().add(ray.direction));
return this.intersectLine(line, optionalTarget, extendLine);
}
}

40
src/common/Singleton.ts Normal file
View File

@@ -0,0 +1,40 @@
let instanceMap = new Map();
export interface PrototypeType<T> extends Function
{
prototype: T;
}
export interface ConstructorFunctionType<T = any> extends PrototypeType<T>
{
new(...args: any[]): T;
}
export type ConstructorType<T = unknown, Static extends Record<string, any> = PrototypeType<T>> = (ConstructorFunctionType<T> | PrototypeType<T>) & {
[Key in keyof Static]: Static[Key];
};
/**
* 构造单例类的静态类.
* # Example:
* class A extends Singleton(){};
* //获得单例
* let a = A.GetInstance();
*/
export class Singleton
{
protected constructor() { }
//ref:https://github.com/Microsoft/TypeScript/issues/5863
static GetInstance<T extends Singleton>(this: ConstructorType<T, typeof Singleton>): T
{
if (instanceMap.has(this))
return instanceMap.get(this);
//@ts-ignore
let __instance__ = new this.prototype.constructor();
instanceMap.set(this, __instance__);
return __instance__;
}
}

168
src/common/Viewer.ts Normal file
View File

@@ -0,0 +1,168 @@
import { Raycaster, Scene, Vector3, WebGLRenderer, type WebGLRendererParameters } from "three";
import { cZeroVec, GetBox, GetBoxArr } from "./GeUtils";
import { PlaneExt } from "./PlaneExt";
import { CameraUpdate } from "webcad_ue4_api";
import { CameraControls } from "./CameraControls";
export class Viewer {
m_LookTarget: any;
m_Camera: CameraUpdate = new CameraUpdate();
CameraCtrl: CameraControls;
protected NeedUpdate: boolean = true;
Renderer: WebGLRenderer;//渲染器 //暂时只用这个类型
m_DomEl: HTMLElement; //画布容器
_Height: number = 0;
_Width: number = 0;
_Scene: Scene = new Scene();
get Scene() {
return this._Scene;
}
UpdateRender()
{
this.NeedUpdate = true;
}
/**
*
* @param {HTMLElement} canvasContainer 可以传入一个div或者一个画布
* @memberof Viewer
*/
constructor(canvasContainer: HTMLElement) {
this.m_DomEl = canvasContainer;
this.initRender(canvasContainer);
this.OnSize();
this.StartRender();
this.CameraCtrl = new CameraControls(this);
window.addEventListener("resize", () => {
this.OnSize();
});
}
//初始化render
initRender(canvasContainer: HTMLElement) {
let params: WebGLRendererParameters = {
antialias: true,//antialias:true/false是否开启反锯齿
precision: "highp",//precision:highp/mediump/lowp着色精度选择
alpha: true//alpha:true/false是否可以设置背景色透明
};
this.Renderer = new WebGLRenderer(params);
//加到画布
canvasContainer.appendChild(this.Renderer.domElement);
this.Renderer.autoClear = true;
//如果设置那么它希望所有的纹理和颜色都是预乘的伽玛。默认值为false。
// this.Renderer.gammaInput = true;
// this.Renderer.gammaOutput = true;
// this.Renderer.shadowMap.enabled = true;
// this.Renderer.toneMapping = ReinhardToneMapping;
//设置设备像素比。 这通常用于HiDPI设备以防止模糊输出画布。
this.Renderer.setPixelRatio(window.devicePixelRatio);
this.Renderer.physicallyCorrectLights = true;
//this.Renderer.toneMappingExposure = Math.pow(1, 5.0); // to allow for very bright scenes.
//设置它的背景色为黑色
this.Renderer.setClearColor(0xffffff, 1);
this.OnSize();
}
OnSize = (width?: number, height?: number) => {
this._Width = width ? width : this.m_DomEl.clientWidth;
this._Height = height ? height : this.m_DomEl.clientHeight;
//校验.成为2的倍数 避免外轮廓错误.
if (this._Width % 2 == 1)
this._Width -= 1;
if (this._Height % 2 == 1)
this._Height -= 1;
this.Renderer.setSize(this._Width, this._Height);
this.m_Camera.SetSize(this._Width, this._Height);
};
StartRender = () => {
requestAnimationFrame(this.StartRender);
if (this._Scene != null && this.NeedUpdate) {
this.Render();
this.NeedUpdate = false;
}
};
Render() {
this.Renderer.render(this._Scene, this.m_Camera.Camera);
}
ScreenToWorld(pt: Vector3, planVec?: Vector3) {
//变换和求交点
let plan = new PlaneExt(planVec || new Vector3(0, 0, 1));
let raycaster = new Raycaster();
// 射线从相机射线向屏幕点位置
raycaster.setFromCamera(
{
x: (pt.x / this._Width) * 2 - 1,
y: - (pt.y / this._Height) * 2 + 1
}
, this.m_Camera.Camera
);
plan.intersectRay(raycaster.ray, pt, true);
}
WorldToScreen(pt: Vector3) {
let widthHalf = this._Width * 0.5;
let heightHalf = this._Height * 0.5;
pt.project(this.m_Camera.Camera);
pt.x = (pt.x * widthHalf) + widthHalf;
pt.y = - (pt.y * heightHalf) + heightHalf;
}
/**
* 更新视角观测目标(物体中心)
*
* @memberof Viewer
*/
UpdateLockTarget() {
let renderList = this.Renderer.renderLists.get(this._Scene, this.m_Camera.Camera);
let box = GetBoxArr(renderList.opaque.map(o => o.object));
if (box)
this.m_LookTarget = box.getCenter(new Vector3());
else
this.m_LookTarget = cZeroVec;
}
Rotate(mouseMove: Vector3) {
this.m_Camera.Rotate(mouseMove, this.m_LookTarget);
this.NeedUpdate = true;
}
Pan(mouseMove: Vector3) {
this.m_Camera.Pan(mouseMove);
this.NeedUpdate = true;
}
Zoom(scale: number, center?: Vector3) {
this.m_Camera.Zoom(scale, center);
this.NeedUpdate = true;
}
ZoomAll()
{
this.m_Camera.ZoomExtentsBox3(GetBox(this._Scene, true));
this.NeedUpdate = true;
}
ViewToTop() {
this.m_Camera.LookAt(new Vector3(0, 0, -1));
this.NeedUpdate = true;
}
ViewToFront() {
this.m_Camera.LookAt(new Vector3(0, 1, 0));
this.NeedUpdate = true;
}
ViewToSwiso() {
this.m_Camera.LookAt(new Vector3(1, 1, -1));
this.NeedUpdate = true;
}
}

View File

@@ -0,0 +1,41 @@
<template>
<div ref="container" style="width: 800px;height: 800px;"></div>
{{ CurGeometryName }}
<div v-for="geo in geometries">
<button @click="changeGeometry(geo[0])">{{ geo[0] }}</button>
</div>
</template>
<script setup lang="ts">
import { onMounted, useTemplateRef } from 'vue';
import { MaterialEditor } from '../common/MaterialEditor';
import { PhysicalMaterialRecord } from 'webcad_ue4_api';
const container = useTemplateRef<HTMLElement>('container');
let editor:MaterialEditor = MaterialEditor.GetInstance();
const geometries = editor.Geometrys;
const material = new PhysicalMaterialRecord();
const CurGeometryName = editor.CurGeometryName;
onMounted(() => {
editor.SetViewer(container.value);
editor.setMaterial(material);
const view = editor.Viewer;
view.OnSize(800, 800);
view.ZoomAll();
view.Zoom(2.1);
})
function changeGeometry(geoName:string) {
CurGeometryName.value = geoName;
let geo = editor.Geometrys.get(CurGeometryName.value);
if (geo) {
editor.ShowMesh.geometry = geo;
editor.Viewer.UpdateRender();
}
}
</script>

6
src/main.ts Normal file
View File

@@ -0,0 +1,6 @@
import { createApp } from 'vue'
import App from './App.vue'
createApp(App).mount('#app')

1
src/vite-env.d.ts vendored Normal file
View File

@@ -0,0 +1 @@
/// <reference types="vite/client" />