import { BufferAttribute, BufferGeometry, CubeUVReflectionMapping, GammaEncoding, LinearEncoding, Mesh, NearestFilter, NoBlending, NoToneMapping, OrthographicCamera, PerspectiveCamera, RawShaderMaterial, RGBDEncoding, RGBEEncoding, RGBEFormat, RGBM16Encoding, RGBM7Encoding, sRGBEncoding, UnsignedByteType, Vector2, Vector3, WebGLRenderer, WebGLRenderTarget } from "three"; const LOD_MIN = 4; const LOD_MAX = 8; const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582]; const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const ENCODINGS = { [LinearEncoding]: 0, [sRGBEncoding]: 1, [RGBEEncoding]: 2, [RGBM7Encoding]: 3, [RGBM16Encoding]: 4, [RGBDEncoding]: 5, [GammaEncoding]: 6 }; //@ts-ignore const _flatCamera = /*@__PURE__*/ new OrthographicCamera(); const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes(); let _oldTarget = null; // Golden Ratio const PHI = (1 + Math.sqrt(5)) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3(1, 1, 1), /*@__PURE__*/ new Vector3(- 1, 1, 1), /*@__PURE__*/ new Vector3(1, 1, - 1), /*@__PURE__*/ new Vector3(- 1, 1, - 1), /*@__PURE__*/ new Vector3(0, PHI, INV_PHI), /*@__PURE__*/ new Vector3(0, PHI, - INV_PHI), /*@__PURE__*/ new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/ new Vector3(- INV_PHI, 0, PHI), /*@__PURE__*/ new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/ new Vector3(- PHI, INV_PHI, 0)]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. */ export class PMREMGenerator3 { _renderer: WebGLRenderer; _pingPongRenderTarget: any; _blurMaterial: RawShaderMaterial; _equirectShader: any; _cubemapShader: any; constructor(renderer: WebGLRenderer) { this._renderer = renderer; this._pingPongRenderTarget = null; this._blurMaterial = _getBlurShader(MAX_SAMPLES); this._equirectShader = null; this._cubemapShader = null; this._compileMaterial(this._blurMaterial); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene(scene, sigma = 0, near = 0.1, far = 100) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(); this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget); if (sigma > 0) { this._blur(cubeUVRenderTarget, 0, 0, sigma); } this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular(equirectangular) { return this._fromTexture(equirectangular); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap(cubemap) { return this._fromTexture(cubemap); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if (this._cubemapShader === null) { this._cubemapShader = _getCubemapShader(); this._compileMaterial(this._cubemapShader); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if (this._equirectShader === null) { this._equirectShader = _getEquirectShader(); this._compileMaterial(this._equirectShader); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._blurMaterial.dispose(); if (this._cubemapShader !== null) this._cubemapShader.dispose(); if (this._equirectShader !== null) this._equirectShader.dispose(); for (let i = 0; i < _lodPlanes.length; i++) { _lodPlanes[i].dispose(); } } // private interface _cleanup(outputTarget) { this._pingPongRenderTarget.dispose(); this._renderer.setRenderTarget(_oldTarget); outputTarget.scissorTest = false; _setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height); } _fromTexture(texture) { _oldTarget = this._renderer.getRenderTarget(); const cubeUVRenderTarget = this._allocateTargets(texture); this._textureToCubeUV(texture, cubeUVRenderTarget); this._applyPMREM(cubeUVRenderTarget); this._cleanup(cubeUVRenderTarget); return cubeUVRenderTarget; } _allocateTargets(texture?) { // warning: null texture is valid const params = { magFilter: NearestFilter, minFilter: NearestFilter, generateMipmaps: false, type: UnsignedByteType, format: RGBEFormat, encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget(params); cubeUVRenderTarget.depthBuffer = texture ? false : true; this._pingPongRenderTarget = _createRenderTarget(params); return cubeUVRenderTarget; } _compileMaterial(material) { const tmpMesh = new Mesh(_lodPlanes[0], material); this._renderer.compile(tmpMesh, _flatCamera); } _sceneToCubeUV(scene, near, far, cubeUVRenderTarget) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera(fov, aspect, near, far); const upSign = [1, - 1, 1, 1, 1, 1]; const forwardSign = [1, 1, 1, - 1, - 1, - 1]; const renderer = this._renderer; const outputEncoding = renderer.outputEncoding; const toneMapping = renderer.toneMapping; const clearColor = renderer.getClearColor(); const clearAlpha = renderer.getClearAlpha(); renderer.toneMapping = NoToneMapping; renderer.outputEncoding = LinearEncoding; let background = scene.background; if (background && background.isColor) { background.convertSRGBToLinear(); // Convert linear to RGBE const maxComponent = Math.max(background.r, background.g, background.b); const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), - 128.0), 127.0); background = background.multiplyScalar(Math.pow(2.0, - fExp)); const alpha = (fExp + 128.0) / 255.0; renderer.setClearColor(background, alpha); scene.background = null; } for (let i = 0; i < 6; i++) { const col = i % 3; if (col == 0) { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(forwardSign[i], 0, 0); } else if (col == 1) { cubeCamera.up.set(0, 0, upSign[i]); cubeCamera.lookAt(0, forwardSign[i], 0); } else { cubeCamera.up.set(0, upSign[i], 0); cubeCamera.lookAt(0, 0, forwardSign[i]); } _setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX); renderer.setRenderTarget(cubeUVRenderTarget); renderer.render(scene, cubeCamera); } renderer.toneMapping = toneMapping; renderer.outputEncoding = outputEncoding; renderer.setClearColor(clearColor, clearAlpha); } _textureToCubeUV(texture, cubeUVRenderTarget) { const renderer = this._renderer; if (texture.isCubeTexture) { if (this._cubemapShader == null) { this._cubemapShader = _getCubemapShader(); } } else { if (this._equirectShader == null) { this._equirectShader = _getEquirectShader(); } } const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader; const mesh = new Mesh(_lodPlanes[0], material); const uniforms = material.uniforms; uniforms['envMap'].value = texture; if (!texture.isCubeTexture) { uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height); } uniforms['inputEncoding'].value = ENCODINGS[texture.encoding]; uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding]; _setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX); renderer.setRenderTarget(cubeUVRenderTarget); renderer.render(mesh, _flatCamera); } _applyPMREM(cubeUVRenderTarget) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; for (let i = 1; i < TOTAL_LODS; i++) { const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]); const poleAxis = _axisDirections[(i - 1) % _axisDirections.length]; this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis?) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis); } _halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if (direction !== 'latitudinal' && direction !== 'longitudinal') { console.error( 'blur direction must be either latitudinal or longitudinal!'); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial); const blurUniforms = blurMaterial.uniforms; const pixels = _sizeLods[lodIn] - 1; const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES; if (samples > MAX_SAMPLES) { console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`); } const weights = []; let sum = 0; for (let i = 0; i < MAX_SAMPLES; ++i) { const x = i / sigmaPixels; const weight = Math.exp(- x * x / 2); weights.push(weight); if (i == 0) { sum += weight; } else if (i < samples) { sum += 2 * weight; } } for (let i = 0; i < weights.length; i++) { weights[i] = weights[i] / sum; } blurUniforms['envMap'].value = targetIn.texture; blurUniforms['samples'].value = samples; blurUniforms['weights'].value = weights; blurUniforms['latitudinal'].value = direction === 'latitudinal'; if (poleAxis) { blurUniforms['poleAxis'].value = poleAxis; } blurUniforms['dTheta'].value = radiansPerPixel; blurUniforms['mipInt'].value = LOD_MAX - lodIn; blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding]; blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding]; const outputSize = _sizeLods[lodOut]; const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize); const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0); _setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize); renderer.setRenderTarget(targetOut); renderer.render(blurMesh, _flatCamera); } } function _isLDR(texture) { if (texture === undefined || texture.type !== UnsignedByteType) return false; return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding; } function _createPlanes() { const _lodPlanes = []; const _sizeLods = []; const _sigmas = []; let lod = LOD_MAX; for (let i = 0; i < TOTAL_LODS; i++) { const sizeLod = Math.pow(2, lod); _sizeLods.push(sizeLod); let sigma = 1.0 / sizeLod; if (i > LOD_MAX - LOD_MIN) { sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1]; } else if (i == 0) { sigma = 0; } _sigmas.push(sigma); const texelSize = 1.0 / (sizeLod - 1); const min = - texelSize / 2; const max = 1 + texelSize / 2; const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array(positionSize * vertices * cubeFaces); const uv = new Float32Array(uvSize * vertices * cubeFaces); const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces); for (let face = 0; face < cubeFaces; face++) { const x = (face % 3) * 2 / 3 - 1; const y = face > 2 ? 0 : - 1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set(coordinates, positionSize * vertices * face); uv.set(uv1, uvSize * vertices * face); const fill = [face, face, face, face, face, face]; faceIndex.set(fill, faceIndexSize * vertices * face); } const planes = new BufferGeometry(); planes.setAttribute('position', new BufferAttribute(position, positionSize)); planes.setAttribute('uv', new BufferAttribute(uv, uvSize)); planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize)); _lodPlanes.push(planes); if (lod > LOD_MIN) { lod--; } } return { _lodPlanes, _sizeLods, _sigmas }; } function _createRenderTarget(params) { const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport(target, x, y, width, height) { target.viewport.set(x, y, width, height); target.scissor.set(x, y, width, height); } function _getBlurShader(maxSamples) { const weights = new Float32Array(maxSamples); const poleAxis = new Vector3(0, 1, 0); const shaderMaterial = new RawShaderMaterial({ name: 'SphericalGaussianBlur', defines: { 'n': maxSamples }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; ${_getEncodings()} #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getEquirectShader() { const texelSize = new Vector2(1, 1); const shaderMaterial = new RawShaderMaterial({ name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null }, 'texelSize': { value: texelSize }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform vec2 texelSize; ${_getEncodings()} #include void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); vec2 f = fract( uv / texelSize - 0.5 ); uv -= f * texelSize; vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x += texelSize.x; vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.y += texelSize.y; vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; uv.x -= texelSize.x; vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb; vec3 tm = mix( tl, tr, f.x ); vec3 bm = mix( bl, br, f.x ); gl_FragColor.rgb = mix( tm, bm, f.y ); gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getCubemapShader() { const shaderMaterial = new RawShaderMaterial({ name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'inputEncoding': { value: ENCODINGS[LinearEncoding] }, 'outputEncoding': { value: ENCODINGS[LinearEncoding] } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform samplerCube envMap; ${_getEncodings()} void main() { gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb; gl_FragColor = linearToOutputTexel( gl_FragColor ); } `, blending: NoBlending, depthTest: false, depthWrite: false }); return shaderMaterial; } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute vec3 position; attribute vec2 uv; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); // //从xz->z-up坐标系变换到 threejs坐标系 mat3 ro = mat3( 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0 ); vOutputDirection = ro * vOutputDirection; gl_Position = vec4( position, 1.0 ); } `; } function _getEncodings() { return /* glsl */` uniform int inputEncoding; uniform int outputEncoding; #include vec4 inputTexelToLinear( vec4 value ) { if ( inputEncoding == 0 ) { return value; } else if ( inputEncoding == 1 ) { return sRGBToLinear( value ); } else if ( inputEncoding == 2 ) { return RGBEToLinear( value ); } else if ( inputEncoding == 3 ) { return RGBMToLinear( value, 7.0 ); } else if ( inputEncoding == 4 ) { return RGBMToLinear( value, 16.0 ); } else if ( inputEncoding == 5 ) { return RGBDToLinear( value, 256.0 ); } else { return GammaToLinear( value, 2.2 ); } } vec4 linearToOutputTexel( vec4 value ) { if ( outputEncoding == 0 ) { return value; } else if ( outputEncoding == 1 ) { return LinearTosRGB( value ); } else if ( outputEncoding == 2 ) { return LinearToRGBE( value ); } else if ( outputEncoding == 3 ) { return LinearToRGBM( value, 7.0 ); } else if ( outputEncoding == 4 ) { return LinearToRGBM( value, 16.0 ); } else if ( outputEncoding == 5 ) { return LinearToRGBD( value, 256.0 ); } else { return LinearToGamma( value, 2.2 ); } } vec4 envMapTexelToLinear( vec4 color ) { return inputTexelToLinear( color ); } `; }