998 lines
25 KiB
TypeScript
998 lines
25 KiB
TypeScript
import { BufferAttribute, BufferGeometry, CubeUVReflectionMapping, GammaEncoding, LinearEncoding, Mesh, NearestFilter, NoBlending, NoToneMapping, OrthographicCamera, PerspectiveCamera, RawShaderMaterial, RGBDEncoding, RGBEEncoding, RGBEFormat, RGBM16Encoding, RGBM7Encoding, sRGBEncoding, UnsignedByteType, Vector2, Vector3, WebGLRenderer, WebGLRenderTarget } from "three";
|
|
|
|
const LOD_MIN = 4;
|
|
const LOD_MAX = 8;
|
|
const SIZE_MAX = Math.pow(2, LOD_MAX);
|
|
|
|
// The standard deviations (radians) associated with the extra mips. These are
|
|
// chosen to approximate a Trowbridge-Reitz distribution function times the
|
|
// geometric shadowing function. These sigma values squared must match the
|
|
// variance #defines in cube_uv_reflection_fragment.glsl.js.
|
|
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
|
|
|
|
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
|
|
|
|
// The maximum length of the blur for loop. Smaller sigmas will use fewer
|
|
// samples and exit early, but not recompile the shader.
|
|
const MAX_SAMPLES = 20;
|
|
|
|
const ENCODINGS = {
|
|
[LinearEncoding]: 0,
|
|
[sRGBEncoding]: 1,
|
|
[RGBEEncoding]: 2,
|
|
[RGBM7Encoding]: 3,
|
|
[RGBM16Encoding]: 4,
|
|
[RGBDEncoding]: 5,
|
|
[GammaEncoding]: 6
|
|
};
|
|
|
|
//@ts-ignore
|
|
const _flatCamera = /*@__PURE__*/ new OrthographicCamera();
|
|
const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes();
|
|
let _oldTarget = null;
|
|
|
|
// Golden Ratio
|
|
const PHI = (1 + Math.sqrt(5)) / 2;
|
|
const INV_PHI = 1 / PHI;
|
|
|
|
// Vertices of a dodecahedron (except the opposites, which represent the
|
|
// same axis), used as axis directions evenly spread on a sphere.
|
|
const _axisDirections = [
|
|
/*@__PURE__*/ new Vector3(1, 1, 1),
|
|
/*@__PURE__*/ new Vector3(- 1, 1, 1),
|
|
/*@__PURE__*/ new Vector3(1, 1, - 1),
|
|
/*@__PURE__*/ new Vector3(- 1, 1, - 1),
|
|
/*@__PURE__*/ new Vector3(0, PHI, INV_PHI),
|
|
/*@__PURE__*/ new Vector3(0, PHI, - INV_PHI),
|
|
/*@__PURE__*/ new Vector3(INV_PHI, 0, PHI),
|
|
/*@__PURE__*/ new Vector3(- INV_PHI, 0, PHI),
|
|
/*@__PURE__*/ new Vector3(PHI, INV_PHI, 0),
|
|
/*@__PURE__*/ new Vector3(- PHI, INV_PHI, 0)];
|
|
|
|
/**
|
|
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
|
* (PMREM) from a cubeMap environment texture. This allows different levels of
|
|
* blur to be quickly accessed based on material roughness. It is packed into a
|
|
* special CubeUV format that allows us to perform custom interpolation so that
|
|
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
|
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
|
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
|
* higher roughness levels. In this way we maintain resolution to smoothly
|
|
* interpolate diffuse lighting while limiting sampling computation.
|
|
*/
|
|
|
|
export class PMREMGenerator3
|
|
{
|
|
_renderer: WebGLRenderer;
|
|
_pingPongRenderTarget: any;
|
|
_blurMaterial: RawShaderMaterial;
|
|
_equirectShader: any;
|
|
_cubemapShader: any;
|
|
|
|
constructor(renderer: WebGLRenderer)
|
|
{
|
|
|
|
this._renderer = renderer;
|
|
this._pingPongRenderTarget = null;
|
|
|
|
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
|
|
this._equirectShader = null;
|
|
this._cubemapShader = null;
|
|
|
|
this._compileMaterial(this._blurMaterial);
|
|
|
|
}
|
|
|
|
/**
|
|
* Generates a PMREM from a supplied Scene, which can be faster than using an
|
|
* image if networking bandwidth is low. Optional sigma specifies a blur radius
|
|
* in radians to be applied to the scene before PMREM generation. Optional near
|
|
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
|
* is placed at the origin).
|
|
*/
|
|
fromScene(scene, sigma = 0, near = 0.1, far = 100)
|
|
{
|
|
|
|
_oldTarget = this._renderer.getRenderTarget();
|
|
const cubeUVRenderTarget = this._allocateTargets();
|
|
|
|
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
|
|
if (sigma > 0)
|
|
{
|
|
|
|
this._blur(cubeUVRenderTarget, 0, 0, sigma);
|
|
|
|
}
|
|
|
|
this._applyPMREM(cubeUVRenderTarget);
|
|
this._cleanup(cubeUVRenderTarget);
|
|
|
|
return cubeUVRenderTarget;
|
|
|
|
}
|
|
|
|
/**
|
|
* Generates a PMREM from an equirectangular texture, which can be either LDR
|
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
|
|
* as this matches best with the 256 x 256 cubemap output.
|
|
*/
|
|
fromEquirectangular(equirectangular)
|
|
{
|
|
|
|
return this._fromTexture(equirectangular);
|
|
|
|
}
|
|
|
|
/**
|
|
* Generates a PMREM from an cubemap texture, which can be either LDR
|
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
|
|
* as this matches best with the 256 x 256 cubemap output.
|
|
*/
|
|
fromCubemap(cubemap)
|
|
{
|
|
|
|
return this._fromTexture(cubemap);
|
|
|
|
}
|
|
|
|
/**
|
|
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
|
* your texture's network fetch for increased concurrency.
|
|
*/
|
|
compileCubemapShader()
|
|
{
|
|
|
|
if (this._cubemapShader === null)
|
|
{
|
|
|
|
this._cubemapShader = _getCubemapShader();
|
|
this._compileMaterial(this._cubemapShader);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
|
* your texture's network fetch for increased concurrency.
|
|
*/
|
|
compileEquirectangularShader()
|
|
{
|
|
|
|
if (this._equirectShader === null)
|
|
{
|
|
|
|
this._equirectShader = _getEquirectShader();
|
|
this._compileMaterial(this._equirectShader);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
|
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
|
* one of them will cause any others to also become unusable.
|
|
*/
|
|
dispose()
|
|
{
|
|
|
|
this._blurMaterial.dispose();
|
|
|
|
if (this._cubemapShader !== null) this._cubemapShader.dispose();
|
|
if (this._equirectShader !== null) this._equirectShader.dispose();
|
|
|
|
for (let i = 0; i < _lodPlanes.length; i++)
|
|
{
|
|
|
|
_lodPlanes[i].dispose();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// private interface
|
|
|
|
_cleanup(outputTarget)
|
|
{
|
|
|
|
this._pingPongRenderTarget.dispose();
|
|
this._renderer.setRenderTarget(_oldTarget);
|
|
outputTarget.scissorTest = false;
|
|
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
|
|
|
|
}
|
|
|
|
_fromTexture(texture)
|
|
{
|
|
|
|
_oldTarget = this._renderer.getRenderTarget();
|
|
const cubeUVRenderTarget = this._allocateTargets(texture);
|
|
this._textureToCubeUV(texture, cubeUVRenderTarget);
|
|
this._applyPMREM(cubeUVRenderTarget);
|
|
this._cleanup(cubeUVRenderTarget);
|
|
|
|
return cubeUVRenderTarget;
|
|
|
|
}
|
|
|
|
_allocateTargets(texture?)
|
|
{ // warning: null texture is valid
|
|
|
|
const params = {
|
|
magFilter: NearestFilter,
|
|
minFilter: NearestFilter,
|
|
generateMipmaps: false,
|
|
type: UnsignedByteType,
|
|
format: RGBEFormat,
|
|
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
|
|
depthBuffer: false
|
|
};
|
|
|
|
const cubeUVRenderTarget = _createRenderTarget(params);
|
|
cubeUVRenderTarget.depthBuffer = texture ? false : true;
|
|
this._pingPongRenderTarget = _createRenderTarget(params);
|
|
return cubeUVRenderTarget;
|
|
|
|
}
|
|
|
|
_compileMaterial(material)
|
|
{
|
|
|
|
const tmpMesh = new Mesh(_lodPlanes[0], material);
|
|
this._renderer.compile(tmpMesh, _flatCamera);
|
|
|
|
}
|
|
|
|
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget)
|
|
{
|
|
|
|
const fov = 90;
|
|
const aspect = 1;
|
|
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
|
|
const upSign = [1, - 1, 1, 1, 1, 1];
|
|
const forwardSign = [1, 1, 1, - 1, - 1, - 1];
|
|
const renderer = this._renderer;
|
|
|
|
const outputEncoding = renderer.outputEncoding;
|
|
const toneMapping = renderer.toneMapping;
|
|
const clearColor = renderer.getClearColor();
|
|
const clearAlpha = renderer.getClearAlpha();
|
|
|
|
renderer.toneMapping = NoToneMapping;
|
|
renderer.outputEncoding = LinearEncoding;
|
|
|
|
let background = scene.background;
|
|
if (background && background.isColor)
|
|
{
|
|
|
|
background.convertSRGBToLinear();
|
|
// Convert linear to RGBE
|
|
const maxComponent = Math.max(background.r, background.g, background.b);
|
|
const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), - 128.0), 127.0);
|
|
background = background.multiplyScalar(Math.pow(2.0, - fExp));
|
|
const alpha = (fExp + 128.0) / 255.0;
|
|
renderer.setClearColor(background, alpha);
|
|
scene.background = null;
|
|
|
|
}
|
|
|
|
for (let i = 0; i < 6; i++)
|
|
{
|
|
|
|
const col = i % 3;
|
|
if (col == 0)
|
|
{
|
|
|
|
cubeCamera.up.set(0, upSign[i], 0);
|
|
cubeCamera.lookAt(forwardSign[i], 0, 0);
|
|
|
|
} else if (col == 1)
|
|
{
|
|
|
|
cubeCamera.up.set(0, 0, upSign[i]);
|
|
cubeCamera.lookAt(0, forwardSign[i], 0);
|
|
|
|
} else
|
|
{
|
|
|
|
cubeCamera.up.set(0, upSign[i], 0);
|
|
cubeCamera.lookAt(0, 0, forwardSign[i]);
|
|
|
|
}
|
|
|
|
_setViewport(cubeUVRenderTarget,
|
|
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
|
|
renderer.setRenderTarget(cubeUVRenderTarget);
|
|
renderer.render(scene, cubeCamera);
|
|
|
|
}
|
|
|
|
renderer.toneMapping = toneMapping;
|
|
renderer.outputEncoding = outputEncoding;
|
|
renderer.setClearColor(clearColor, clearAlpha);
|
|
|
|
}
|
|
|
|
_textureToCubeUV(texture, cubeUVRenderTarget)
|
|
{
|
|
|
|
const renderer = this._renderer;
|
|
|
|
if (texture.isCubeTexture)
|
|
{
|
|
|
|
if (this._cubemapShader == null)
|
|
{
|
|
|
|
this._cubemapShader = _getCubemapShader();
|
|
|
|
}
|
|
|
|
} else
|
|
{
|
|
|
|
if (this._equirectShader == null)
|
|
{
|
|
|
|
this._equirectShader = _getEquirectShader();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
|
|
const mesh = new Mesh(_lodPlanes[0], material);
|
|
|
|
const uniforms = material.uniforms;
|
|
|
|
uniforms['envMap'].value = texture;
|
|
|
|
if (!texture.isCubeTexture)
|
|
{
|
|
|
|
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
|
|
|
|
}
|
|
|
|
uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
|
|
uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
|
|
|
|
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
|
|
|
|
renderer.setRenderTarget(cubeUVRenderTarget);
|
|
renderer.render(mesh, _flatCamera);
|
|
|
|
}
|
|
|
|
_applyPMREM(cubeUVRenderTarget)
|
|
{
|
|
|
|
const renderer = this._renderer;
|
|
const autoClear = renderer.autoClear;
|
|
renderer.autoClear = false;
|
|
|
|
for (let i = 1; i < TOTAL_LODS; i++)
|
|
{
|
|
|
|
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
|
|
|
|
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
|
|
|
|
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
|
|
|
|
}
|
|
|
|
renderer.autoClear = autoClear;
|
|
|
|
}
|
|
|
|
/**
|
|
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
|
* vertically and horizontally, but this breaks down on a cube. Here we apply
|
|
* the blur latitudinally (around the poles), and then longitudinally (towards
|
|
* the poles) to approximate the orthogonally-separable blur. It is least
|
|
* accurate at the poles, but still does a decent job.
|
|
*/
|
|
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis?)
|
|
{
|
|
|
|
const pingPongRenderTarget = this._pingPongRenderTarget;
|
|
|
|
this._halfBlur(
|
|
cubeUVRenderTarget,
|
|
pingPongRenderTarget,
|
|
lodIn,
|
|
lodOut,
|
|
sigma,
|
|
'latitudinal',
|
|
poleAxis);
|
|
|
|
this._halfBlur(
|
|
pingPongRenderTarget,
|
|
cubeUVRenderTarget,
|
|
lodOut,
|
|
lodOut,
|
|
sigma,
|
|
'longitudinal',
|
|
poleAxis);
|
|
|
|
}
|
|
|
|
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis)
|
|
{
|
|
|
|
const renderer = this._renderer;
|
|
const blurMaterial = this._blurMaterial;
|
|
|
|
if (direction !== 'latitudinal' && direction !== 'longitudinal')
|
|
{
|
|
|
|
console.error(
|
|
'blur direction must be either latitudinal or longitudinal!');
|
|
|
|
}
|
|
|
|
// Number of standard deviations at which to cut off the discrete approximation.
|
|
const STANDARD_DEVIATIONS = 3;
|
|
|
|
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
|
|
const blurUniforms = blurMaterial.uniforms;
|
|
|
|
const pixels = _sizeLods[lodIn] - 1;
|
|
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
|
|
const sigmaPixels = sigmaRadians / radiansPerPixel;
|
|
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
|
|
|
|
if (samples > MAX_SAMPLES)
|
|
{
|
|
|
|
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
|
|
|
|
}
|
|
|
|
const weights = [];
|
|
let sum = 0;
|
|
|
|
for (let i = 0; i < MAX_SAMPLES; ++i)
|
|
{
|
|
|
|
const x = i / sigmaPixels;
|
|
const weight = Math.exp(- x * x / 2);
|
|
weights.push(weight);
|
|
|
|
if (i == 0)
|
|
{
|
|
|
|
sum += weight;
|
|
|
|
} else if (i < samples)
|
|
{
|
|
|
|
sum += 2 * weight;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (let i = 0; i < weights.length; i++)
|
|
{
|
|
|
|
weights[i] = weights[i] / sum;
|
|
|
|
}
|
|
|
|
blurUniforms['envMap'].value = targetIn.texture;
|
|
blurUniforms['samples'].value = samples;
|
|
blurUniforms['weights'].value = weights;
|
|
blurUniforms['latitudinal'].value = direction === 'latitudinal';
|
|
|
|
if (poleAxis)
|
|
{
|
|
|
|
blurUniforms['poleAxis'].value = poleAxis;
|
|
|
|
}
|
|
|
|
blurUniforms['dTheta'].value = radiansPerPixel;
|
|
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
|
|
blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
|
|
blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
|
|
|
|
const outputSize = _sizeLods[lodOut];
|
|
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
|
|
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
|
|
|
|
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
|
|
renderer.setRenderTarget(targetOut);
|
|
renderer.render(blurMesh, _flatCamera);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function _isLDR(texture)
|
|
{
|
|
|
|
if (texture === undefined || texture.type !== UnsignedByteType) return false;
|
|
|
|
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
|
|
|
|
}
|
|
|
|
function _createPlanes()
|
|
{
|
|
|
|
const _lodPlanes = [];
|
|
const _sizeLods = [];
|
|
const _sigmas = [];
|
|
|
|
let lod = LOD_MAX;
|
|
|
|
for (let i = 0; i < TOTAL_LODS; i++)
|
|
{
|
|
|
|
const sizeLod = Math.pow(2, lod);
|
|
_sizeLods.push(sizeLod);
|
|
let sigma = 1.0 / sizeLod;
|
|
|
|
if (i > LOD_MAX - LOD_MIN)
|
|
{
|
|
|
|
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
|
|
|
|
} else if (i == 0)
|
|
{
|
|
|
|
sigma = 0;
|
|
|
|
}
|
|
|
|
_sigmas.push(sigma);
|
|
|
|
const texelSize = 1.0 / (sizeLod - 1);
|
|
const min = - texelSize / 2;
|
|
const max = 1 + texelSize / 2;
|
|
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
|
|
|
|
const cubeFaces = 6;
|
|
const vertices = 6;
|
|
const positionSize = 3;
|
|
const uvSize = 2;
|
|
const faceIndexSize = 1;
|
|
|
|
const position = new Float32Array(positionSize * vertices * cubeFaces);
|
|
const uv = new Float32Array(uvSize * vertices * cubeFaces);
|
|
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
|
|
|
|
for (let face = 0; face < cubeFaces; face++)
|
|
{
|
|
|
|
const x = (face % 3) * 2 / 3 - 1;
|
|
const y = face > 2 ? 0 : - 1;
|
|
const coordinates = [
|
|
x, y, 0,
|
|
x + 2 / 3, y, 0,
|
|
x + 2 / 3, y + 1, 0,
|
|
x, y, 0,
|
|
x + 2 / 3, y + 1, 0,
|
|
x, y + 1, 0
|
|
];
|
|
position.set(coordinates, positionSize * vertices * face);
|
|
uv.set(uv1, uvSize * vertices * face);
|
|
const fill = [face, face, face, face, face, face];
|
|
faceIndex.set(fill, faceIndexSize * vertices * face);
|
|
|
|
}
|
|
|
|
const planes = new BufferGeometry();
|
|
planes.setAttribute('position', new BufferAttribute(position, positionSize));
|
|
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
|
|
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
|
|
_lodPlanes.push(planes);
|
|
|
|
if (lod > LOD_MIN)
|
|
{
|
|
|
|
lod--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return { _lodPlanes, _sizeLods, _sigmas };
|
|
|
|
}
|
|
|
|
function _createRenderTarget(params)
|
|
{
|
|
|
|
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
|
|
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
|
|
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
|
cubeUVRenderTarget.scissorTest = true;
|
|
return cubeUVRenderTarget;
|
|
|
|
}
|
|
|
|
function _setViewport(target, x, y, width, height)
|
|
{
|
|
|
|
target.viewport.set(x, y, width, height);
|
|
target.scissor.set(x, y, width, height);
|
|
|
|
}
|
|
|
|
function _getBlurShader(maxSamples)
|
|
{
|
|
|
|
const weights = new Float32Array(maxSamples);
|
|
const poleAxis = new Vector3(0, 1, 0);
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
|
|
name: 'SphericalGaussianBlur',
|
|
|
|
defines: { 'n': maxSamples },
|
|
|
|
uniforms: {
|
|
'envMap': { value: null },
|
|
'samples': { value: 1 },
|
|
'weights': { value: weights },
|
|
'latitudinal': { value: false },
|
|
'dTheta': { value: 0 },
|
|
'mipInt': { value: 0 },
|
|
'poleAxis': { value: poleAxis },
|
|
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
|
|
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
|
|
},
|
|
|
|
vertexShader: _getCommonVertexShader(),
|
|
|
|
fragmentShader: /* glsl */`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform sampler2D envMap;
|
|
uniform int samples;
|
|
uniform float weights[ n ];
|
|
uniform bool latitudinal;
|
|
uniform float dTheta;
|
|
uniform float mipInt;
|
|
uniform vec3 poleAxis;
|
|
|
|
${_getEncodings()}
|
|
|
|
#define ENVMAP_TYPE_CUBE_UV
|
|
#include <cube_uv_reflection_fragment>
|
|
|
|
vec3 getSample( float theta, vec3 axis ) {
|
|
|
|
float cosTheta = cos( theta );
|
|
// Rodrigues' axis-angle rotation
|
|
vec3 sampleDirection = vOutputDirection * cosTheta
|
|
+ cross( axis, vOutputDirection ) * sin( theta )
|
|
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
|
|
|
|
return bilinearCubeUV( envMap, sampleDirection, mipInt );
|
|
|
|
}
|
|
|
|
void main() {
|
|
|
|
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
|
|
|
|
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
|
|
|
|
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
|
|
|
|
}
|
|
|
|
axis = normalize( axis );
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
|
|
|
|
for ( int i = 1; i < n; i++ ) {
|
|
|
|
if ( i >= samples ) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
float theta = dTheta * float( i );
|
|
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
|
|
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
|
|
|
|
}
|
|
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
|
|
});
|
|
|
|
return shaderMaterial;
|
|
|
|
}
|
|
|
|
function _getEquirectShader()
|
|
{
|
|
|
|
const texelSize = new Vector2(1, 1);
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
|
|
name: 'EquirectangularToCubeUV',
|
|
|
|
uniforms: {
|
|
'envMap': { value: null },
|
|
'texelSize': { value: texelSize },
|
|
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
|
|
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
|
|
},
|
|
|
|
vertexShader: _getCommonVertexShader(),
|
|
|
|
fragmentShader: /* glsl */`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform sampler2D envMap;
|
|
uniform vec2 texelSize;
|
|
|
|
${_getEncodings()}
|
|
|
|
#include <common>
|
|
|
|
void main() {
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
|
|
vec3 outputDirection = normalize( vOutputDirection );
|
|
vec2 uv = equirectUv( outputDirection );
|
|
|
|
vec2 f = fract( uv / texelSize - 0.5 );
|
|
uv -= f * texelSize;
|
|
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.x += texelSize.x;
|
|
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.y += texelSize.y;
|
|
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.x -= texelSize.x;
|
|
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
|
|
vec3 tm = mix( tl, tr, f.x );
|
|
vec3 bm = mix( bl, br, f.x );
|
|
gl_FragColor.rgb = mix( tm, bm, f.y );
|
|
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
|
|
});
|
|
|
|
return shaderMaterial;
|
|
|
|
}
|
|
|
|
function _getCubemapShader()
|
|
{
|
|
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
|
|
name: 'CubemapToCubeUV',
|
|
|
|
uniforms: {
|
|
'envMap': { value: null },
|
|
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
|
|
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
|
|
},
|
|
|
|
vertexShader: _getCommonVertexShader(),
|
|
|
|
fragmentShader: /* glsl */`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform samplerCube envMap;
|
|
|
|
${_getEncodings()}
|
|
|
|
void main() {
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
|
|
});
|
|
|
|
return shaderMaterial;
|
|
|
|
}
|
|
|
|
function _getCommonVertexShader()
|
|
{
|
|
|
|
return /* glsl */`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
attribute vec3 position;
|
|
attribute vec2 uv;
|
|
attribute float faceIndex;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
// RH coordinate system; PMREM face-indexing convention
|
|
vec3 getDirection( vec2 uv, float face ) {
|
|
|
|
uv = 2.0 * uv - 1.0;
|
|
|
|
vec3 direction = vec3( uv, 1.0 );
|
|
|
|
if ( face == 0.0 ) {
|
|
|
|
direction = direction.zyx; // ( 1, v, u ) pos x
|
|
|
|
} else if ( face == 1.0 ) {
|
|
|
|
direction = direction.xzy;
|
|
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
|
|
|
|
} else if ( face == 2.0 ) {
|
|
|
|
direction.x *= -1.0; // ( -u, v, 1 ) pos z
|
|
|
|
} else if ( face == 3.0 ) {
|
|
|
|
direction = direction.zyx;
|
|
direction.xz *= -1.0; // ( -1, v, -u ) neg x
|
|
|
|
} else if ( face == 4.0 ) {
|
|
|
|
direction = direction.xzy;
|
|
direction.xy *= -1.0; // ( -u, -1, v ) neg y
|
|
|
|
} else if ( face == 5.0 ) {
|
|
|
|
direction.z *= -1.0; // ( u, v, -1 ) neg z
|
|
|
|
}
|
|
|
|
return direction;
|
|
|
|
}
|
|
|
|
void main() {
|
|
|
|
vOutputDirection = getDirection( uv, faceIndex );
|
|
|
|
// //从xz->z-up坐标系变换到 threejs坐标系
|
|
mat3 ro = mat3(
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, -1.0,
|
|
0.0, 1.0, 0
|
|
);
|
|
vOutputDirection = ro * vOutputDirection;
|
|
|
|
gl_Position = vec4( position, 1.0 );
|
|
|
|
}
|
|
`;
|
|
|
|
}
|
|
|
|
function _getEncodings()
|
|
{
|
|
|
|
return /* glsl */`
|
|
|
|
uniform int inputEncoding;
|
|
uniform int outputEncoding;
|
|
|
|
#include <encodings_pars_fragment>
|
|
|
|
vec4 inputTexelToLinear( vec4 value ) {
|
|
|
|
if ( inputEncoding == 0 ) {
|
|
|
|
return value;
|
|
|
|
} else if ( inputEncoding == 1 ) {
|
|
|
|
return sRGBToLinear( value );
|
|
|
|
} else if ( inputEncoding == 2 ) {
|
|
|
|
return RGBEToLinear( value );
|
|
|
|
} else if ( inputEncoding == 3 ) {
|
|
|
|
return RGBMToLinear( value, 7.0 );
|
|
|
|
} else if ( inputEncoding == 4 ) {
|
|
|
|
return RGBMToLinear( value, 16.0 );
|
|
|
|
} else if ( inputEncoding == 5 ) {
|
|
|
|
return RGBDToLinear( value, 256.0 );
|
|
|
|
} else {
|
|
|
|
return GammaToLinear( value, 2.2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vec4 linearToOutputTexel( vec4 value ) {
|
|
|
|
if ( outputEncoding == 0 ) {
|
|
|
|
return value;
|
|
|
|
} else if ( outputEncoding == 1 ) {
|
|
|
|
return LinearTosRGB( value );
|
|
|
|
} else if ( outputEncoding == 2 ) {
|
|
|
|
return LinearToRGBE( value );
|
|
|
|
} else if ( outputEncoding == 3 ) {
|
|
|
|
return LinearToRGBM( value, 7.0 );
|
|
|
|
} else if ( outputEncoding == 4 ) {
|
|
|
|
return LinearToRGBM( value, 16.0 );
|
|
|
|
} else if ( outputEncoding == 5 ) {
|
|
|
|
return LinearToRGBD( value, 256.0 );
|
|
|
|
} else {
|
|
|
|
return LinearToGamma( value, 2.2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vec4 envMapTexelToLinear( vec4 color ) {
|
|
|
|
return inputTexelToLinear( color );
|
|
|
|
}
|
|
`;
|
|
|
|
}
|