Files
material-editor/src/common/PMREMGenerator2.ts
2025-04-10 16:37:20 +08:00

998 lines
25 KiB
TypeScript

import { BufferAttribute, BufferGeometry, CubeUVReflectionMapping, GammaEncoding, LinearEncoding, Mesh, NearestFilter, NoBlending, NoToneMapping, OrthographicCamera, PerspectiveCamera, RawShaderMaterial, RGBDEncoding, RGBEEncoding, RGBEFormat, RGBM16Encoding, RGBM7Encoding, sRGBEncoding, UnsignedByteType, Vector2, Vector3, WebGLRenderer, WebGLRenderTarget } from "three";
const LOD_MIN = 4;
const LOD_MAX = 8;
const SIZE_MAX = Math.pow(2, LOD_MAX);
// The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length;
// The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const ENCODINGS = {
[LinearEncoding]: 0,
[sRGBEncoding]: 1,
[RGBEEncoding]: 2,
[RGBM7Encoding]: 3,
[RGBM16Encoding]: 4,
[RGBDEncoding]: 5,
[GammaEncoding]: 6
};
//@ts-ignore
const _flatCamera = /*@__PURE__*/ new OrthographicCamera();
const { _lodPlanes, _sizeLods, _sigmas } = /*@__PURE__*/ _createPlanes();
let _oldTarget = null;
// Golden Ratio
const PHI = (1 + Math.sqrt(5)) / 2;
const INV_PHI = 1 / PHI;
// Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [
/*@__PURE__*/ new Vector3(1, 1, 1),
/*@__PURE__*/ new Vector3(- 1, 1, 1),
/*@__PURE__*/ new Vector3(1, 1, - 1),
/*@__PURE__*/ new Vector3(- 1, 1, - 1),
/*@__PURE__*/ new Vector3(0, PHI, INV_PHI),
/*@__PURE__*/ new Vector3(0, PHI, - INV_PHI),
/*@__PURE__*/ new Vector3(INV_PHI, 0, PHI),
/*@__PURE__*/ new Vector3(- INV_PHI, 0, PHI),
/*@__PURE__*/ new Vector3(PHI, INV_PHI, 0),
/*@__PURE__*/ new Vector3(- PHI, INV_PHI, 0)];
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*/
export class PMREMGenerator3
{
_renderer: WebGLRenderer;
_pingPongRenderTarget: any;
_blurMaterial: RawShaderMaterial;
_equirectShader: any;
_cubemapShader: any;
constructor(renderer: WebGLRenderer)
{
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
this._equirectShader = null;
this._cubemapShader = null;
this._compileMaterial(this._blurMaterial);
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene(scene, sigma = 0, near = 0.1, far = 100)
{
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets();
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
if (sigma > 0)
{
this._blur(cubeUVRenderTarget, 0, 0, sigma);
}
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular(equirectangular)
{
return this._fromTexture(equirectangular);
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap(cubemap)
{
return this._fromTexture(cubemap);
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader()
{
if (this._cubemapShader === null)
{
this._cubemapShader = _getCubemapShader();
this._compileMaterial(this._cubemapShader);
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader()
{
if (this._equirectShader === null)
{
this._equirectShader = _getEquirectShader();
this._compileMaterial(this._equirectShader);
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose()
{
this._blurMaterial.dispose();
if (this._cubemapShader !== null) this._cubemapShader.dispose();
if (this._equirectShader !== null) this._equirectShader.dispose();
for (let i = 0; i < _lodPlanes.length; i++)
{
_lodPlanes[i].dispose();
}
}
// private interface
_cleanup(outputTarget)
{
this._pingPongRenderTarget.dispose();
this._renderer.setRenderTarget(_oldTarget);
outputTarget.scissorTest = false;
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
}
_fromTexture(texture)
{
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets(texture);
this._textureToCubeUV(texture, cubeUVRenderTarget);
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
_allocateTargets(texture?)
{ // warning: null texture is valid
const params = {
magFilter: NearestFilter,
minFilter: NearestFilter,
generateMipmaps: false,
type: UnsignedByteType,
format: RGBEFormat,
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget(params);
cubeUVRenderTarget.depthBuffer = texture ? false : true;
this._pingPongRenderTarget = _createRenderTarget(params);
return cubeUVRenderTarget;
}
_compileMaterial(material)
{
const tmpMesh = new Mesh(_lodPlanes[0], material);
this._renderer.compile(tmpMesh, _flatCamera);
}
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget)
{
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
const upSign = [1, - 1, 1, 1, 1, 1];
const forwardSign = [1, 1, 1, - 1, - 1, - 1];
const renderer = this._renderer;
const outputEncoding = renderer.outputEncoding;
const toneMapping = renderer.toneMapping;
const clearColor = renderer.getClearColor();
const clearAlpha = renderer.getClearAlpha();
renderer.toneMapping = NoToneMapping;
renderer.outputEncoding = LinearEncoding;
let background = scene.background;
if (background && background.isColor)
{
background.convertSRGBToLinear();
// Convert linear to RGBE
const maxComponent = Math.max(background.r, background.g, background.b);
const fExp = Math.min(Math.max(Math.ceil(Math.log2(maxComponent)), - 128.0), 127.0);
background = background.multiplyScalar(Math.pow(2.0, - fExp));
const alpha = (fExp + 128.0) / 255.0;
renderer.setClearColor(background, alpha);
scene.background = null;
}
for (let i = 0; i < 6; i++)
{
const col = i % 3;
if (col == 0)
{
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(forwardSign[i], 0, 0);
} else if (col == 1)
{
cubeCamera.up.set(0, 0, upSign[i]);
cubeCamera.lookAt(0, forwardSign[i], 0);
} else
{
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(0, 0, forwardSign[i]);
}
_setViewport(cubeUVRenderTarget,
col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
renderer.render(scene, cubeCamera);
}
renderer.toneMapping = toneMapping;
renderer.outputEncoding = outputEncoding;
renderer.setClearColor(clearColor, clearAlpha);
}
_textureToCubeUV(texture, cubeUVRenderTarget)
{
const renderer = this._renderer;
if (texture.isCubeTexture)
{
if (this._cubemapShader == null)
{
this._cubemapShader = _getCubemapShader();
}
} else
{
if (this._equirectShader == null)
{
this._equirectShader = _getEquirectShader();
}
}
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
const mesh = new Mesh(_lodPlanes[0], material);
const uniforms = material.uniforms;
uniforms['envMap'].value = texture;
if (!texture.isCubeTexture)
{
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
}
uniforms['inputEncoding'].value = ENCODINGS[texture.encoding];
uniforms['outputEncoding'].value = ENCODINGS[cubeUVRenderTarget.texture.encoding];
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
renderer.render(mesh, _flatCamera);
}
_applyPMREM(cubeUVRenderTarget)
{
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
for (let i = 1; i < TOTAL_LODS; i++)
{
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis?)
{
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(
cubeUVRenderTarget,
pingPongRenderTarget,
lodIn,
lodOut,
sigma,
'latitudinal',
poleAxis);
this._halfBlur(
pingPongRenderTarget,
cubeUVRenderTarget,
lodOut,
lodOut,
sigma,
'longitudinal',
poleAxis);
}
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis)
{
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if (direction !== 'latitudinal' && direction !== 'longitudinal')
{
console.error(
'blur direction must be either latitudinal or longitudinal!');
}
// Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
const blurUniforms = blurMaterial.uniforms;
const pixels = _sizeLods[lodIn] - 1;
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
if (samples > MAX_SAMPLES)
{
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
}
const weights = [];
let sum = 0;
for (let i = 0; i < MAX_SAMPLES; ++i)
{
const x = i / sigmaPixels;
const weight = Math.exp(- x * x / 2);
weights.push(weight);
if (i == 0)
{
sum += weight;
} else if (i < samples)
{
sum += 2 * weight;
}
}
for (let i = 0; i < weights.length; i++)
{
weights[i] = weights[i] / sum;
}
blurUniforms['envMap'].value = targetIn.texture;
blurUniforms['samples'].value = samples;
blurUniforms['weights'].value = weights;
blurUniforms['latitudinal'].value = direction === 'latitudinal';
if (poleAxis)
{
blurUniforms['poleAxis'].value = poleAxis;
}
blurUniforms['dTheta'].value = radiansPerPixel;
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
blurUniforms['inputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
blurUniforms['outputEncoding'].value = ENCODINGS[targetIn.texture.encoding];
const outputSize = _sizeLods[lodOut];
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
renderer.setRenderTarget(targetOut);
renderer.render(blurMesh, _flatCamera);
}
}
function _isLDR(texture)
{
if (texture === undefined || texture.type !== UnsignedByteType) return false;
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
function _createPlanes()
{
const _lodPlanes = [];
const _sizeLods = [];
const _sigmas = [];
let lod = LOD_MAX;
for (let i = 0; i < TOTAL_LODS; i++)
{
const sizeLod = Math.pow(2, lod);
_sizeLods.push(sizeLod);
let sigma = 1.0 / sizeLod;
if (i > LOD_MAX - LOD_MIN)
{
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
} else if (i == 0)
{
sigma = 0;
}
_sigmas.push(sigma);
const texelSize = 1.0 / (sizeLod - 1);
const min = - texelSize / 2;
const max = 1 + texelSize / 2;
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array(positionSize * vertices * cubeFaces);
const uv = new Float32Array(uvSize * vertices * cubeFaces);
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
for (let face = 0; face < cubeFaces; face++)
{
const x = (face % 3) * 2 / 3 - 1;
const y = face > 2 ? 0 : - 1;
const coordinates = [
x, y, 0,
x + 2 / 3, y, 0,
x + 2 / 3, y + 1, 0,
x, y, 0,
x + 2 / 3, y + 1, 0,
x, y + 1, 0
];
position.set(coordinates, positionSize * vertices * face);
uv.set(uv1, uvSize * vertices * face);
const fill = [face, face, face, face, face, face];
faceIndex.set(fill, faceIndexSize * vertices * face);
}
const planes = new BufferGeometry();
planes.setAttribute('position', new BufferAttribute(position, positionSize));
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
_lodPlanes.push(planes);
if (lod > LOD_MIN)
{
lod--;
}
}
return { _lodPlanes, _sizeLods, _sigmas };
}
function _createRenderTarget(params)
{
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport(target, x, y, width, height)
{
target.viewport.set(x, y, width, height);
target.scissor.set(x, y, width, height);
}
function _getBlurShader(maxSamples)
{
const weights = new Float32Array(maxSamples);
const poleAxis = new Vector3(0, 1, 0);
const shaderMaterial = new RawShaderMaterial({
name: 'SphericalGaussianBlur',
defines: { 'n': maxSamples },
uniforms: {
'envMap': { value: null },
'samples': { value: 1 },
'weights': { value: weights },
'latitudinal': { value: false },
'dTheta': { value: 0 },
'mipInt': { value: 0 },
'poleAxis': { value: poleAxis },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
${_getEncodings()}
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getEquirectShader()
{
const texelSize = new Vector2(1, 1);
const shaderMaterial = new RawShaderMaterial({
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': { value: null },
'texelSize': { value: texelSize },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform vec2 texelSize;
${_getEncodings()}
#include <common>
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
vec2 f = fract( uv / texelSize - 0.5 );
uv -= f * texelSize;
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x += texelSize.x;
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.y += texelSize.y;
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x -= texelSize.x;
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
vec3 tm = mix( tl, tr, f.x );
vec3 bm = mix( bl, br, f.x );
gl_FragColor.rgb = mix( tm, bm, f.y );
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCubemapShader()
{
const shaderMaterial = new RawShaderMaterial({
name: 'CubemapToCubeUV',
uniforms: {
'envMap': { value: null },
'inputEncoding': { value: ENCODINGS[LinearEncoding] },
'outputEncoding': { value: ENCODINGS[LinearEncoding] }
},
vertexShader: _getCommonVertexShader(),
fragmentShader: /* glsl */`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
${_getEncodings()}
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCommonVertexShader()
{
return /* glsl */`
precision mediump float;
precision mediump int;
attribute vec3 position;
attribute vec2 uv;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
// //从xz->z-up坐标系变换到 threejs坐标系
mat3 ro = mat3(
1.0, 0.0, 0.0,
0.0, 0.0, -1.0,
0.0, 1.0, 0
);
vOutputDirection = ro * vOutputDirection;
gl_Position = vec4( position, 1.0 );
}
`;
}
function _getEncodings()
{
return /* glsl */`
uniform int inputEncoding;
uniform int outputEncoding;
#include <encodings_pars_fragment>
vec4 inputTexelToLinear( vec4 value ) {
if ( inputEncoding == 0 ) {
return value;
} else if ( inputEncoding == 1 ) {
return sRGBToLinear( value );
} else if ( inputEncoding == 2 ) {
return RGBEToLinear( value );
} else if ( inputEncoding == 3 ) {
return RGBMToLinear( value, 7.0 );
} else if ( inputEncoding == 4 ) {
return RGBMToLinear( value, 16.0 );
} else if ( inputEncoding == 5 ) {
return RGBDToLinear( value, 256.0 );
} else {
return GammaToLinear( value, 2.2 );
}
}
vec4 linearToOutputTexel( vec4 value ) {
if ( outputEncoding == 0 ) {
return value;
} else if ( outputEncoding == 1 ) {
return LinearTosRGB( value );
} else if ( outputEncoding == 2 ) {
return LinearToRGBE( value );
} else if ( outputEncoding == 3 ) {
return LinearToRGBM( value, 7.0 );
} else if ( outputEncoding == 4 ) {
return LinearToRGBM( value, 16.0 );
} else if ( outputEncoding == 5 ) {
return LinearToRGBD( value, 256.0 );
} else {
return LinearToGamma( value, 2.2 );
}
}
vec4 envMapTexelToLinear( vec4 color ) {
return inputTexelToLinear( color );
}
`;
}