可用
This commit is contained in:
24
Plugins/MeshUtilities2/MeshUtilities2.uplugin
Normal file
24
Plugins/MeshUtilities2/MeshUtilities2.uplugin
Normal file
@@ -0,0 +1,24 @@
|
||||
{
|
||||
"FileVersion": 3,
|
||||
"Version": 1,
|
||||
"VersionName": "1.0",
|
||||
"FriendlyName": "MeshUtilities2",
|
||||
"Description": "",
|
||||
"Category": "Other",
|
||||
"CreatedBy": "ChenX",
|
||||
"CreatedByURL": "",
|
||||
"DocsURL": "",
|
||||
"MarketplaceURL": "",
|
||||
"SupportURL": "",
|
||||
"CanContainContent": true,
|
||||
"IsBetaVersion": false,
|
||||
"IsExperimentalVersion": false,
|
||||
"Installed": false,
|
||||
"Modules": [
|
||||
{
|
||||
"Name": "MeshUtilities2",
|
||||
"Type": "Runtime",
|
||||
"LoadingPhase": "Default"
|
||||
}
|
||||
]
|
||||
}
|
BIN
Plugins/MeshUtilities2/Resources/Icon128.png
Normal file
BIN
Plugins/MeshUtilities2/Resources/Icon128.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
@@ -0,0 +1,88 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
using UnrealBuildTool;
|
||||
|
||||
public class MeshUtilities2 : ModuleRules
|
||||
{
|
||||
public MeshUtilities2(ReadOnlyTargetRules Target) : base(Target)
|
||||
{
|
||||
PublicDependencyModuleNames.AddRange(
|
||||
new string[]
|
||||
{
|
||||
// "MaterialUtilities",
|
||||
}
|
||||
);
|
||||
|
||||
PrivateDependencyModuleNames.AddRange(
|
||||
new string[]
|
||||
{
|
||||
"Core",
|
||||
"CoreUObject",
|
||||
"Engine",
|
||||
"RawMesh",
|
||||
"RenderCore", // For FPackedNormal
|
||||
"SlateCore",
|
||||
"Slate",
|
||||
// "MaterialUtilities",
|
||||
// "MeshBoneReduction",
|
||||
// "EditorFramework",
|
||||
// "UnrealEd",
|
||||
"RHI",
|
||||
//"HierarchicalLODUtilities",
|
||||
"Landscape",
|
||||
// "LevelEditor",
|
||||
// "PropertyEditor",
|
||||
// "EditorStyle",
|
||||
// "GraphColor",
|
||||
// "MeshBuilderCommon",
|
||||
"MeshUtilitiesCommon",
|
||||
"MeshDescription",
|
||||
"StaticMeshDescription",
|
||||
// "ToolMenus",
|
||||
}
|
||||
);
|
||||
|
||||
PublicIncludePathModuleNames.AddRange(
|
||||
new string[]
|
||||
{
|
||||
"MeshMergeUtilities"
|
||||
}
|
||||
);
|
||||
|
||||
PrivateIncludePathModuleNames.AddRange(
|
||||
new string[]
|
||||
{
|
||||
// "AnimationBlueprintEditor",
|
||||
// "AnimationEditor",
|
||||
// "MeshMergeUtilities",
|
||||
// "MaterialBaking",
|
||||
// "Persona",
|
||||
// "SkeletalMeshEditor",
|
||||
}
|
||||
);
|
||||
|
||||
DynamicallyLoadedModuleNames.AddRange(
|
||||
new string[]
|
||||
{
|
||||
// "AnimationBlueprintEditor",
|
||||
// "AnimationEditor",
|
||||
// "MeshMergeUtilities",
|
||||
// "MaterialBaking",
|
||||
// "SkeletalMeshEditor",
|
||||
}
|
||||
);
|
||||
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "nvTriStrip");
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "ForsythTriOptimizer");
|
||||
// AddEngineThirdPartyPrivateStaticDependencies(Target, "QuadricMeshReduction");
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "MikkTSpace");
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "nvTessLib");
|
||||
|
||||
if (Target.Platform == UnrealTargetPlatform.Win64)
|
||||
{
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "DX9");
|
||||
}
|
||||
|
||||
AddEngineThirdPartyPrivateStaticDependencies(Target, "Embree3");
|
||||
}
|
||||
}
|
@@ -0,0 +1,598 @@
|
||||
#include "DistanceFieldAtlas2.h"
|
||||
// #include "DistanceFieldAtlas.h"
|
||||
// #include "HAL/RunnableThread.h"
|
||||
// #include "HAL/Runnable.h"
|
||||
// #include "Misc/App.h"
|
||||
// #include "Serialization/MemoryReader.h"
|
||||
// #include "Serialization/MemoryWriter.h"
|
||||
#include "Modules/ModuleManager.h"
|
||||
#include "StaticMeshResources.h"
|
||||
#include "ProfilingDebugging/CookStats.h"
|
||||
#include "Templates/UniquePtr.h"
|
||||
#include "Engine/StaticMesh.h"
|
||||
#include "Misc/AutomationTest.h"
|
||||
// #include "Async/ParallelFor.h"
|
||||
// #include "DistanceFieldDownsampling.h"
|
||||
// #include "GlobalShader.h"
|
||||
#include "RenderGraph.h"
|
||||
#include "MeshCardRepresentation.h"
|
||||
#include "Misc/QueuedThreadPoolWrapper.h"
|
||||
// #include "Async/Async.h"
|
||||
#include "ObjectCacheContext.h"
|
||||
|
||||
// #if WITH_EDITOR
|
||||
// #include "DerivedDataCacheInterface.h"
|
||||
#include "Engine/Public/DistanceFieldAtlas.h"
|
||||
|
||||
// #include "AssetCompilingManager.h"
|
||||
#include "MeshCardRepresentation2.h"
|
||||
#include "StaticMeshCompiler.h"
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
// #endif
|
||||
|
||||
CSV_DEFINE_CATEGORY(DistanceField2, false);
|
||||
|
||||
#if ENABLE_COOK_STATS
|
||||
namespace DistanceFieldCookStats
|
||||
{
|
||||
FCookStats::FDDCResourceUsageStats UsageStats;
|
||||
static FCookStatsManager::FAutoRegisterCallback RegisterCookStats([](FCookStatsManager::AddStatFuncRef AddStat)
|
||||
{
|
||||
UsageStats.LogStats(AddStat, TEXT("DistanceField2.Usage"), TEXT(""));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
FDistanceFieldAsyncQueue2* GDistanceFieldAsyncQueue2 = nullptr;
|
||||
|
||||
int32 GUseAsyncDistanceFieldBuildQueue2 = 1;
|
||||
static FAutoConsoleVariableRef CVarAOAsyncBuildQueue(
|
||||
TEXT("r.AOAsyncBuildQueue2"),
|
||||
GUseAsyncDistanceFieldBuildQueue2,
|
||||
TEXT("是否从网格异步构建距离场体数据。"),
|
||||
ECVF_Default | ECVF_ReadOnly
|
||||
);
|
||||
|
||||
//构建距离场
|
||||
void BuildMeshDistanceField(UStaticMesh* StaticMesh)
|
||||
{
|
||||
//ref:StaticMesh.cpp 2782
|
||||
auto RenderData = StaticMesh->GetRenderData();
|
||||
if (RenderData->LODResources.IsValidIndex(0))
|
||||
{
|
||||
auto& LODResource = RenderData->LODResources[0];
|
||||
if (!LODResource.DistanceFieldData)
|
||||
{
|
||||
LODResource.DistanceFieldData = new FDistanceFieldVolumeData();
|
||||
LODResource.DistanceFieldData->AssetName = StaticMesh->GetFName();
|
||||
}
|
||||
|
||||
// We don't actually build the resource until later, so only track the cycles used here.
|
||||
// COOK_STAT(Timer.TrackCyclesOnly());
|
||||
FAsyncDistanceFieldTask2* NewTask = new FAsyncDistanceFieldTask2;
|
||||
NewTask->DDCKey = "";
|
||||
// check(Mesh && GenerateSource);
|
||||
// NewTask->TargetPlatform = RunningPlatform;
|
||||
NewTask->StaticMesh = StaticMesh;
|
||||
NewTask->GenerateSource = StaticMesh; //GenerateSource;
|
||||
NewTask->DistanceFieldResolutionScale = 2; //DistanceFieldResolutionScale;
|
||||
NewTask->bGenerateDistanceFieldAsIfTwoSided = false; // bGenerateDistanceFieldAsIfTwoSided;
|
||||
NewTask->GeneratedVolumeData = new FDistanceFieldVolumeData(); //;给一个新的用于存放
|
||||
NewTask->GeneratedVolumeData->AssetName = StaticMesh->GetFName();
|
||||
NewTask->GeneratedVolumeData->bAsyncBuilding = true;
|
||||
|
||||
for (int32 MaterialIndex = 0; MaterialIndex < StaticMesh->GetStaticMaterials().Num(); MaterialIndex++)
|
||||
{
|
||||
FSignedDistanceFieldBuildMaterialData2 MaterialData;
|
||||
// Default material blend mode
|
||||
MaterialData.BlendMode = BLEND_Opaque;
|
||||
MaterialData.bTwoSided = false;
|
||||
|
||||
if (StaticMesh->GetStaticMaterials()[MaterialIndex].MaterialInterface)
|
||||
{
|
||||
MaterialData.BlendMode = StaticMesh->GetStaticMaterials()[MaterialIndex].MaterialInterface->GetBlendMode();
|
||||
MaterialData.bTwoSided = StaticMesh->GetStaticMaterials()[MaterialIndex].MaterialInterface->IsTwoSided();
|
||||
}
|
||||
|
||||
NewTask->MaterialBlendModes.Add(MaterialData);
|
||||
}
|
||||
|
||||
// // Nanite overrides source static mesh with a coarse representation. Need to load original data before we build the mesh SDF.
|
||||
// if (StaticMesh->NaniteSettings.bEnabled)
|
||||
// {
|
||||
// IMeshBuilderModule& MeshBuilderModule = IMeshBuilderModule::GetForPlatform(TargetPlatform);
|
||||
// if (!MeshBuilderModule.BuildMeshVertexPositions(Mesh, NewTask->SourceMeshData.TriangleIndices, NewTask->SourceMeshData.VertexPositions))
|
||||
// {
|
||||
// UE_LOG(LogStaticMesh, Error, TEXT("Failed to build static mesh. See previous line(s) for details."));
|
||||
// }
|
||||
// }
|
||||
|
||||
GDistanceFieldAsyncQueue2->AddTask(NewTask);
|
||||
}
|
||||
}
|
||||
|
||||
void BuildMeshCardRepresentation(UStaticMesh* StaticMeshAsset, FStaticMeshRenderData& RenderData, FSourceMeshDataForDerivedDataTask* OptionalSourceMeshData)
|
||||
{
|
||||
if (RenderData.LODResources.IsValidIndex(0))
|
||||
{
|
||||
if (!RenderData.LODResources[0].CardRepresentationData)
|
||||
{
|
||||
RenderData.LODResources[0].CardRepresentationData = new FCardRepresentationData();
|
||||
}
|
||||
|
||||
// const FMeshBuildSettings& BuildSettings = StaticMeshAsset->GetSourceModel(0).BuildSettings;
|
||||
// UStaticMesh* MeshToGenerateFrom = StaticMeshAsset;
|
||||
|
||||
// We don't actually build the resource until later, so only track the cycles used here.
|
||||
// COOK_STAT(Timer.TrackCyclesOnly());
|
||||
FAsyncCardRepresentationTask2* NewTask = new FAsyncCardRepresentationTask2;
|
||||
// NewTask->DDCKey = InDDCKey;
|
||||
check(StaticMeshAsset);
|
||||
NewTask->StaticMesh = StaticMeshAsset;
|
||||
NewTask->GenerateSource = StaticMeshAsset;
|
||||
NewTask->GeneratedCardRepresentation = new FCardRepresentationData();
|
||||
NewTask->bGenerateDistanceFieldAsIfTwoSided = false;
|
||||
|
||||
for (int32 MaterialIndex = 0; MaterialIndex < StaticMeshAsset->GetStaticMaterials().Num(); MaterialIndex++)
|
||||
{
|
||||
FSignedDistanceFieldBuildMaterialData2 MaterialData;
|
||||
// Default material blend mode
|
||||
MaterialData.BlendMode = BLEND_Opaque;
|
||||
MaterialData.bTwoSided = false;
|
||||
|
||||
if (StaticMeshAsset->GetStaticMaterials()[MaterialIndex].MaterialInterface)
|
||||
{
|
||||
MaterialData.BlendMode = StaticMeshAsset->GetStaticMaterials()[MaterialIndex].MaterialInterface->GetBlendMode();
|
||||
MaterialData.bTwoSided = StaticMeshAsset->GetStaticMaterials()[MaterialIndex].MaterialInterface->IsTwoSided();
|
||||
}
|
||||
|
||||
NewTask->MaterialBlendModes.Add(MaterialData);
|
||||
}
|
||||
|
||||
// Nanite overrides source static mesh with a coarse representation. Need to load original data before we build the mesh SDF.
|
||||
if (OptionalSourceMeshData)
|
||||
{
|
||||
NewTask->SourceMeshData = *OptionalSourceMeshData;
|
||||
}
|
||||
// else if (StaticMeshAsset->NaniteSettings.bEnabled)
|
||||
// {
|
||||
// IMeshBuilderModule& MeshBuilderModule = IMeshBuilderModule::GetForPlatform(TargetPlatform);
|
||||
// if (!MeshBuilderModule.BuildMeshVertexPositions(Mesh, NewTask->SourceMeshData.TriangleIndices, NewTask->SourceMeshData.VertexPositions))
|
||||
// {
|
||||
// UE_LOG(LogStaticMesh, Error, TEXT("Failed to build static mesh. See previous line(s) for details."));
|
||||
// }
|
||||
// }
|
||||
|
||||
GCardRepresentationAsyncQueue2->AddTask(NewTask);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
FAsyncDistanceFieldTask2::FAsyncDistanceFieldTask2()
|
||||
: StaticMesh(nullptr)
|
||||
, GenerateSource(nullptr)
|
||||
, DistanceFieldResolutionScale(0.0f)
|
||||
, bGenerateDistanceFieldAsIfTwoSided(false)
|
||||
, GeneratedVolumeData(nullptr)
|
||||
{
|
||||
}
|
||||
|
||||
FDistanceFieldAsyncQueue2::FDistanceFieldAsyncQueue2()
|
||||
{
|
||||
MeshUtilities = NULL;
|
||||
// #if WITH_EDITOR
|
||||
// const int32 MaxConcurrency = -1;
|
||||
// // In Editor, we allow faster compilation by letting the asset compiler's scheduler organize work.
|
||||
// ThreadPool = MakeUnique<FQueuedThreadPoolWrapper>(FAssetCompilingManager::Get().GetThreadPool(), MaxConcurrency, [](EQueuedWorkPriority) { return EQueuedWorkPriority::Lowest; });
|
||||
// #else
|
||||
const int32 MaxConcurrency = -1;
|
||||
ThreadPool = MakeUnique<FQueuedThreadPoolWrapper>(GThreadPool, MaxConcurrency, [](EQueuedWorkPriority) { return EQueuedWorkPriority::Lowest; });
|
||||
// #endif
|
||||
}
|
||||
|
||||
FDistanceFieldAsyncQueue2::~FDistanceFieldAsyncQueue2()
|
||||
{
|
||||
}
|
||||
|
||||
void FAsyncDistanceFieldTaskWorker2::DoWork()
|
||||
{
|
||||
// Put on background thread to avoid interfering with game-thread bound tasks
|
||||
FQueuedThreadPoolTaskGraphWrapper TaskGraphWrapper(ENamedThreads::AnyBackgroundThreadNormalTask);
|
||||
GDistanceFieldAsyncQueue2->Build(&Task, TaskGraphWrapper);
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::CancelBackgroundTask(TArray<FAsyncDistanceFieldTask2*> Tasks)
|
||||
{
|
||||
// Do all the cancellation first to make sure none of these tasks
|
||||
// get scheduled as we're waiting for completion.
|
||||
for (FAsyncDistanceFieldTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->Cancel();
|
||||
}
|
||||
}
|
||||
|
||||
for (FAsyncDistanceFieldTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->EnsureCompletion();
|
||||
Task->AsyncTask.Reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::StartBackgroundTask(FAsyncDistanceFieldTask2* Task)
|
||||
{
|
||||
check(Task->AsyncTask == nullptr);
|
||||
Task->AsyncTask = MakeUnique<FAsyncTask<FAsyncDistanceFieldTaskWorker2>>(*Task);
|
||||
Task->AsyncTask->StartBackgroundTask(ThreadPool.Get(), EQueuedWorkPriority::Lowest);
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::ProcessPendingTasks()
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
TArray<FAsyncDistanceFieldTask2*> Tasks = MoveTemp(PendingTasks);
|
||||
for (FAsyncDistanceFieldTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource && Task->GenerateSource->IsCompiling())
|
||||
{
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
StartBackgroundTask(Task);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::AddTask(FAsyncDistanceFieldTask2* Task)
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
if (!MeshUtilities)
|
||||
{
|
||||
MeshUtilities = &FModuleManager::Get().LoadModuleChecked<IMeshUtilities2>(TEXT("MeshUtilities2"));
|
||||
}
|
||||
|
||||
{
|
||||
// Array protection when called from multiple threads
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
ReferencedTasks.Add(Task);
|
||||
}
|
||||
|
||||
// The Source Mesh's RenderData is not yet ready, postpone the build
|
||||
if (Task->GenerateSource->IsCompiling())
|
||||
{
|
||||
// Array protection when called from multiple threads
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
// If we're already in worker threads, there is no need to launch an async task.
|
||||
if (GUseAsyncDistanceFieldBuildQueue2 || !IsInGameThread())
|
||||
{
|
||||
StartBackgroundTask(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
// To avoid deadlocks, we must queue the inner build tasks on another thread pool, so use the task graph.
|
||||
// Put on background thread to avoid interfering with game-thread bound tasks
|
||||
FQueuedThreadPoolTaskGraphWrapper TaskGraphWrapper(ENamedThreads::AnyBackgroundThreadNormalTask);
|
||||
Build(Task, TaskGraphWrapper);
|
||||
}
|
||||
}
|
||||
// #else
|
||||
// UE_LOG(LogStaticMesh,Fatal,TEXT("Tried to build a distance field without editor support (this should have been done during cooking)"));
|
||||
// #endif
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::CancelBuild(UStaticMesh* StaticMesh)
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::CancelBuild)
|
||||
|
||||
TArray<FAsyncDistanceFieldTask2*> TasksToCancel;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
TArray<FAsyncDistanceFieldTask2*> Tasks = MoveTemp(PendingTasks);
|
||||
PendingTasks.Reserve(Tasks.Num());
|
||||
for (FAsyncDistanceFieldTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource != StaticMesh && Task->StaticMesh != StaticMesh)
|
||||
{
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
}
|
||||
|
||||
Tasks = MoveTemp(ReferencedTasks);
|
||||
ReferencedTasks.Reserve(Tasks.Num());
|
||||
for (FAsyncDistanceFieldTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource != StaticMesh && Task->StaticMesh != StaticMesh)
|
||||
{
|
||||
ReferencedTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
TasksToCancel.Add(Task);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CancelBackgroundTask(TasksToCancel);
|
||||
for (FAsyncDistanceFieldTask2* Task : TasksToCancel)
|
||||
{
|
||||
if (Task->GeneratedVolumeData != nullptr)
|
||||
{
|
||||
// Rendering thread may still be referencing the old one, use the deferred cleanup interface to delete it next frame when it is safe
|
||||
BeginCleanup(Task->GeneratedVolumeData);
|
||||
}
|
||||
|
||||
delete Task;
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::CancelAllOutstandingBuilds()
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::CancelAllOutstandingBuilds)
|
||||
|
||||
TArray<FAsyncDistanceFieldTask2*> OutstandingTasks;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
PendingTasks.Empty();
|
||||
OutstandingTasks = MoveTemp(ReferencedTasks);
|
||||
}
|
||||
|
||||
CancelBackgroundTask(OutstandingTasks);
|
||||
for (FAsyncDistanceFieldTask2* Task : OutstandingTasks)
|
||||
{
|
||||
delete Task;
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::RescheduleBackgroundTask(FAsyncDistanceFieldTask2* InTask, EQueuedWorkPriority InPriority)
|
||||
{
|
||||
if (InTask->AsyncTask)
|
||||
{
|
||||
if (InTask->AsyncTask->GetPriority() != InPriority)
|
||||
{
|
||||
InTask->AsyncTask->Reschedule(GThreadPool, InPriority);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::BlockUntilBuildComplete(UStaticMesh* StaticMesh, bool bWarnIfBlocked)
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::BlockUntilBuildComplete)
|
||||
|
||||
// We will track the wait time here, but only the cycles used.
|
||||
// This function is called whether or not an async task is pending,
|
||||
// so we have to look elsewhere to properly count how many resources have actually finished building.
|
||||
COOK_STAT(auto Timer = DistanceFieldCookStats::UsageStats.TimeAsyncWait());
|
||||
COOK_STAT(Timer.TrackCyclesOnly());
|
||||
bool bReferenced = false;
|
||||
bool bHadToBlock = false;
|
||||
double StartTime = 0;
|
||||
|
||||
TSet<UStaticMesh*> RequiredFinishCompilation;
|
||||
do
|
||||
{
|
||||
ProcessAsyncTasks();
|
||||
|
||||
bReferenced = false;
|
||||
RequiredFinishCompilation.Reset();
|
||||
|
||||
// Reschedule the tasks we're waiting on as highest prio
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
if (ReferencedTasks[TaskIndex]->StaticMesh == StaticMesh ||
|
||||
ReferencedTasks[TaskIndex]->GenerateSource == StaticMesh)
|
||||
{
|
||||
bReferenced = true;
|
||||
|
||||
// If the task we are waiting on depends on other static meshes
|
||||
// we need to force finish them too.
|
||||
// #if WITH_EDITOR
|
||||
|
||||
if (ReferencedTasks[TaskIndex]->GenerateSource != nullptr &&
|
||||
ReferencedTasks[TaskIndex]->GenerateSource->IsCompiling())
|
||||
{
|
||||
RequiredFinishCompilation.Add(ReferencedTasks[TaskIndex]->GenerateSource);
|
||||
}
|
||||
|
||||
if (ReferencedTasks[TaskIndex]->StaticMesh != nullptr &&
|
||||
ReferencedTasks[TaskIndex]->StaticMesh->IsCompiling())
|
||||
{
|
||||
RequiredFinishCompilation.Add(ReferencedTasks[TaskIndex]->StaticMesh);
|
||||
}
|
||||
// #endif
|
||||
|
||||
RescheduleBackgroundTask(ReferencedTasks[TaskIndex], EQueuedWorkPriority::Highest);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if WITH_EDITOR
|
||||
// Call the finish compilation outside of the critical section since those compilations
|
||||
// might need to register new distance field tasks which also uses the critical section.
|
||||
if (RequiredFinishCompilation.Num())
|
||||
{
|
||||
FStaticMeshCompilingManager::Get().FinishCompilation(RequiredFinishCompilation.Array());
|
||||
}
|
||||
#endif
|
||||
|
||||
if (bReferenced)
|
||||
{
|
||||
if (!bHadToBlock)
|
||||
{
|
||||
StartTime = FPlatformTime::Seconds();
|
||||
}
|
||||
|
||||
bHadToBlock = true;
|
||||
FPlatformProcess::Sleep(.01f);
|
||||
}
|
||||
}
|
||||
while (bReferenced);
|
||||
|
||||
if (bHadToBlock &&
|
||||
bWarnIfBlocked
|
||||
#if WITH_EDITOR
|
||||
&& !FAutomationTestFramework::Get().GetCurrentTest() // HACK - Don't output this warning during automation test
|
||||
#endif
|
||||
)
|
||||
{
|
||||
UE_LOG(LogStaticMesh, Display, TEXT("Main thread blocked for %.3fs for async distance field build of %s to complete! This can happen if the mesh is rebuilt excessively."),
|
||||
(float)(FPlatformTime::Seconds() - StartTime),
|
||||
*StaticMesh->GetName());
|
||||
}
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::BlockUntilAllBuildsComplete()
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::BlockUntilAllBuildsComplete)
|
||||
do
|
||||
{
|
||||
#if WITH_EDITOR
|
||||
FStaticMeshCompilingManager::Get().FinishAllCompilation();
|
||||
#endif
|
||||
// Reschedule as highest prio since we're explicitly waiting on them
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
RescheduleBackgroundTask(ReferencedTasks[TaskIndex], EQueuedWorkPriority::Highest);
|
||||
}
|
||||
}
|
||||
|
||||
ProcessAsyncTasks();
|
||||
FPlatformProcess::Sleep(.01f);
|
||||
}
|
||||
while (GetNumOutstandingTasks() > 0);
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::Build(FAsyncDistanceFieldTask2* Task, FQueuedThreadPool& BuildThreadPool)
|
||||
{
|
||||
//#if WITH_EDITOR
|
||||
// Editor 'force delete' can null any UObject pointers which are seen by reference collecting (eg FProperty or serialized)
|
||||
if (Task->StaticMesh && Task->GenerateSource)
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::Build);
|
||||
|
||||
const FStaticMeshLODResources& LODModel = Task->GenerateSource->GetRenderData()->LODResources[0];
|
||||
MeshUtilities->GenerateSignedDistanceFieldVolumeData(
|
||||
Task->StaticMesh->GetName(),
|
||||
Task->SourceMeshData,
|
||||
LODModel,
|
||||
BuildThreadPool,
|
||||
Task->MaterialBlendModes,
|
||||
Task->GenerateSource->GetRenderData()->Bounds,
|
||||
Task->DistanceFieldResolutionScale,
|
||||
Task->bGenerateDistanceFieldAsIfTwoSided,
|
||||
*Task->GeneratedVolumeData);
|
||||
}
|
||||
|
||||
CompletedTasks.Push(Task);
|
||||
//#endif
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::AddReferencedObjects(FReferenceCollector& Collector)
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
// Make sure none of the UObjects referenced by the async tasks are GC'ed during the task
|
||||
Collector.AddReferencedObject(ReferencedTasks[TaskIndex]->StaticMesh);
|
||||
Collector.AddReferencedObject(ReferencedTasks[TaskIndex]->GenerateSource);
|
||||
}
|
||||
}
|
||||
|
||||
FString FDistanceFieldAsyncQueue2::GetReferencerName() const
|
||||
{
|
||||
return TEXT("FDistanceFieldAsyncQueue2");
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::ProcessAsyncTasks(bool bLimitExecutionTime)
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FDistanceFieldAsyncQueue2::ProcessAsyncTasks);
|
||||
|
||||
ProcessPendingTasks();
|
||||
|
||||
FObjectCacheContextScope ObjectCacheScope;
|
||||
const double MaxProcessingTime = 0.016f;
|
||||
double StartTime = FPlatformTime::Seconds();
|
||||
while (!bLimitExecutionTime || (FPlatformTime::Seconds() - StartTime) < MaxProcessingTime)
|
||||
{
|
||||
FAsyncDistanceFieldTask2* Task = CompletedTasks.Pop();
|
||||
if (Task == nullptr)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// We want to count each resource built from a DDC miss, so count each iteration of the loop separately.
|
||||
COOK_STAT(auto Timer = DistanceFieldCookStats::UsageStats.TimeSyncWork());
|
||||
|
||||
bool bWasCancelled = false;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
bWasCancelled = ReferencedTasks.Remove(Task) == 0;
|
||||
}
|
||||
|
||||
if (bWasCancelled)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->EnsureCompletion();
|
||||
Task->AsyncTask.Reset();
|
||||
}
|
||||
|
||||
// Editor 'force delete' can null any UObject pointers which are seen by reference collecting (eg FProperty or serialized)
|
||||
if (Task->StaticMesh)
|
||||
{
|
||||
Task->GeneratedVolumeData->bAsyncBuilding = false;
|
||||
FDistanceFieldVolumeData* OldVolumeData = Task->StaticMesh->GetRenderData()->LODResources[0].DistanceFieldData;
|
||||
|
||||
// Assign the new volume data, this is safe because the render thread makes a copy of the pointer at scene proxy creation time.
|
||||
Task->StaticMesh->GetRenderData()->LODResources[0].DistanceFieldData = Task->GeneratedVolumeData;
|
||||
|
||||
// Renderstates are not initialized between UStaticMesh::PreEditChange() and UStaticMesh::PostEditChange()
|
||||
if (Task->StaticMesh->GetRenderData()->IsInitialized())
|
||||
{
|
||||
for (UStaticMeshComponent* Component : ObjectCacheScope.GetContext().GetStaticMeshComponents(Task->StaticMesh))
|
||||
{
|
||||
if (Component->IsRegistered() && Component->IsRenderStateCreated())
|
||||
{
|
||||
Component->MarkRenderStateDirty();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (OldVolumeData)
|
||||
{
|
||||
// Rendering thread may still be referencing the old one, use the deferred cleanup interface to delete it next frame when it is safe
|
||||
BeginCleanup(OldVolumeData);
|
||||
}
|
||||
|
||||
//第二阶段
|
||||
BuildMeshCardRepresentation(Task->StaticMesh, *Task->StaticMesh->GetRenderData(), &Task->SourceMeshData);
|
||||
}
|
||||
|
||||
delete Task;
|
||||
}
|
||||
// #endif
|
||||
}
|
||||
|
||||
void FDistanceFieldAsyncQueue2::Shutdown()
|
||||
{
|
||||
CancelAllOutstandingBuilds();
|
||||
|
||||
UE_LOG(LogStaticMesh, Log, TEXT("Abandoning remaining async distance field tasks for shutdown"));
|
||||
ThreadPool->Destroy();
|
||||
}
|
@@ -0,0 +1,456 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
/*=============================================================================
|
||||
MeshCardRepresentation.cpp
|
||||
=============================================================================*/
|
||||
|
||||
#include "MeshCardRepresentation2.h"
|
||||
|
||||
#include "MeshCardRepresentation.h"
|
||||
#include "MeshUtilities2.h"
|
||||
#include "Modules/ModuleManager.h"
|
||||
#include "StaticMeshResources.h"
|
||||
#include "ProfilingDebugging/CookStats.h"
|
||||
#include "Templates/UniquePtr.h"
|
||||
#include "Engine/StaticMesh.h"
|
||||
#include "Misc/AutomationTest.h"
|
||||
#include "Misc/QueuedThreadPoolWrapper.h"
|
||||
#include "ObjectCacheContext.h"
|
||||
|
||||
#if WITH_EDITOR
|
||||
#include "AssetCompilingManager.h"
|
||||
// #include "DerivedDataCacheInterface.h"
|
||||
// #include "MeshUtilities.h"
|
||||
// #include "StaticMeshCompiler.h"
|
||||
#endif
|
||||
|
||||
#if WITH_EDITORONLY_DATA
|
||||
#include "IMeshBuilderModule.h"
|
||||
#endif
|
||||
|
||||
#if ENABLE_COOK_STATS
|
||||
namespace CardRepresentationCookStats
|
||||
{
|
||||
FCookStats::FDDCResourceUsageStats UsageStats;
|
||||
static FCookStatsManager::FAutoRegisterCallback RegisterCookStats([](FCookStatsManager::AddStatFuncRef AddStat)
|
||||
{
|
||||
UsageStats.LogStats(AddStat, TEXT("CardRepresentation.Usage"), TEXT(""));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
// static TAutoConsoleVariable<int32> CVarCardRepresentation(
|
||||
// TEXT("r.MeshCardRepresentation"),
|
||||
// 1,
|
||||
// TEXT(""),
|
||||
// ECVF_ReadOnly);
|
||||
|
||||
// static TAutoConsoleVariable<float> CVarCardRepresentationMinSurface(
|
||||
// TEXT("r.MeshCardRepresentation.MinSurface"),
|
||||
// 0.2f,
|
||||
// TEXT("Min percentage of surface treshold to spawn a new card, [0;1] range."),
|
||||
// ECVF_ReadOnly);
|
||||
|
||||
FCardRepresentationAsyncQueue2* GCardRepresentationAsyncQueue2 = NULL;
|
||||
|
||||
int32 GUseAsyncCardRepresentationBuildQueue2 = 1;
|
||||
static FAutoConsoleVariableRef CVarCardRepresentationAsyncBuildQueue2(
|
||||
TEXT("r.MeshCardRepresentation.Async"),
|
||||
GUseAsyncCardRepresentationBuildQueue2,
|
||||
TEXT("."),
|
||||
ECVF_Default | ECVF_ReadOnly
|
||||
);
|
||||
|
||||
FCardRepresentationAsyncQueue2::FCardRepresentationAsyncQueue2()
|
||||
{
|
||||
MeshUtilities = NULL;
|
||||
#if WITH_EDITOR
|
||||
const int32 MaxConcurrency = -1;
|
||||
// In Editor, we allow faster compilation by letting the asset compiler's scheduler organize work.
|
||||
ThreadPool = MakeUnique<FQueuedThreadPoolWrapper>(FAssetCompilingManager::Get().GetThreadPool(), MaxConcurrency, [](EQueuedWorkPriority) { return EQueuedWorkPriority::Lowest; });
|
||||
#else
|
||||
const int32 MaxConcurrency = -1;
|
||||
ThreadPool = MakeUnique<FQueuedThreadPoolWrapper>(GThreadPool, MaxConcurrency, [](EQueuedWorkPriority) { return EQueuedWorkPriority::Lowest; });
|
||||
#endif
|
||||
}
|
||||
|
||||
FCardRepresentationAsyncQueue2::~FCardRepresentationAsyncQueue2()
|
||||
{
|
||||
}
|
||||
|
||||
void FAsyncCardRepresentationTaskWorker2::DoWork()
|
||||
{
|
||||
// Put on background thread to avoid interfering with game-thread bound tasks
|
||||
FQueuedThreadPoolTaskGraphWrapper TaskGraphWrapper(ENamedThreads::AnyBackgroundThreadNormalTask);
|
||||
GCardRepresentationAsyncQueue2->Build(&Task, TaskGraphWrapper);
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::CancelBackgroundTask(TArray<FAsyncCardRepresentationTask2*> Tasks)
|
||||
{
|
||||
// Do all the cancellation first to make sure none of these tasks
|
||||
// get scheduled as we're waiting for completion.
|
||||
for (FAsyncCardRepresentationTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->Cancel();
|
||||
}
|
||||
}
|
||||
|
||||
for (FAsyncCardRepresentationTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->EnsureCompletion();
|
||||
Task->AsyncTask.Reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::StartBackgroundTask(FAsyncCardRepresentationTask2* Task)
|
||||
{
|
||||
check(Task->AsyncTask == nullptr);
|
||||
Task->AsyncTask = MakeUnique<FAsyncTask<FAsyncCardRepresentationTaskWorker2>>(*Task);
|
||||
Task->AsyncTask->StartBackgroundTask(ThreadPool.Get(), EQueuedWorkPriority::Lowest);
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::ProcessPendingTasks()
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
TArray<FAsyncCardRepresentationTask2*> Tasks = MoveTemp(PendingTasks);
|
||||
for (FAsyncCardRepresentationTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource && Task->GenerateSource->IsCompiling())
|
||||
{
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
StartBackgroundTask(Task);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::AddTask(FAsyncCardRepresentationTask2* Task)
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
if (!MeshUtilities)
|
||||
{
|
||||
MeshUtilities = &FModuleManager::Get().LoadModuleChecked<IMeshUtilities2>(TEXT("MeshUtilities2"));
|
||||
}
|
||||
|
||||
{
|
||||
// Array protection when called from multiple threads
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
ReferencedTasks.Add(Task);
|
||||
}
|
||||
|
||||
// The Source Mesh's RenderData is not yet ready, postpone the build
|
||||
if (Task->GenerateSource->IsCompiling())
|
||||
{
|
||||
// Array protection when called from multiple threads
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
// If we're already in worker threads there is no need to launch an async task.
|
||||
if (GUseAsyncCardRepresentationBuildQueue2 || !IsInGameThread())
|
||||
{
|
||||
StartBackgroundTask(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
// To avoid deadlocks, we must queue the inner build tasks on another thread pool, so use the task graph.
|
||||
// Put on background thread to avoid interfering with game-thread bound tasks
|
||||
FQueuedThreadPoolTaskGraphWrapper TaskGraphWrapper(ENamedThreads::AnyBackgroundThreadNormalTask);
|
||||
Build(Task, TaskGraphWrapper);
|
||||
}
|
||||
}
|
||||
// #else
|
||||
// UE_LOG(LogStaticMesh,Fatal,TEXT("Tried to build a card representation without editor support (this should have been done during cooking)"));
|
||||
// #endif
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::CancelBuild(UStaticMesh* StaticMesh)
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FCardRepresentationAsyncQueue2::CancelBuild);
|
||||
|
||||
TArray<FAsyncCardRepresentationTask2*> TasksToCancel;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
TArray<FAsyncCardRepresentationTask2*> Tasks = MoveTemp(PendingTasks);
|
||||
PendingTasks.Reserve(Tasks.Num());
|
||||
for (FAsyncCardRepresentationTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource != StaticMesh && Task->StaticMesh != StaticMesh)
|
||||
{
|
||||
PendingTasks.Add(Task);
|
||||
}
|
||||
}
|
||||
|
||||
Tasks = MoveTemp(ReferencedTasks);
|
||||
ReferencedTasks.Reserve(Tasks.Num());
|
||||
for (FAsyncCardRepresentationTask2* Task : Tasks)
|
||||
{
|
||||
if (Task->GenerateSource != StaticMesh && Task->StaticMesh != StaticMesh)
|
||||
{
|
||||
ReferencedTasks.Add(Task);
|
||||
}
|
||||
else
|
||||
{
|
||||
TasksToCancel.Add(Task);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CancelBackgroundTask(TasksToCancel);
|
||||
for (FAsyncCardRepresentationTask2* Task : TasksToCancel)
|
||||
{
|
||||
if (Task->GeneratedCardRepresentation != nullptr)
|
||||
{
|
||||
// Rendering thread may still be referencing the old one, use the deferred cleanup interface to delete it next frame when it is safe
|
||||
BeginCleanup(Task->GeneratedCardRepresentation);
|
||||
}
|
||||
|
||||
delete Task;
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::CancelAllOutstandingBuilds()
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FCardRepresentationAsyncQueue2::CancelAllOutstandingBuilds);
|
||||
|
||||
TArray<FAsyncCardRepresentationTask2*> OutstandingTasks;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
PendingTasks.Empty();
|
||||
OutstandingTasks = MoveTemp(ReferencedTasks);
|
||||
}
|
||||
|
||||
CancelBackgroundTask(OutstandingTasks);
|
||||
for (FAsyncCardRepresentationTask2* Task : OutstandingTasks)
|
||||
{
|
||||
delete Task;
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::RescheduleBackgroundTask(FAsyncCardRepresentationTask2* InTask, EQueuedWorkPriority InPriority)
|
||||
{
|
||||
if (InTask->AsyncTask)
|
||||
{
|
||||
if (InTask->AsyncTask->GetPriority() != InPriority)
|
||||
{
|
||||
InTask->AsyncTask->Reschedule(GThreadPool, InPriority);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::BlockUntilBuildComplete(UStaticMesh* StaticMesh, bool bWarnIfBlocked)
|
||||
{
|
||||
// We will track the wait time here, but only the cycles used.
|
||||
// This function is called whether or not an async task is pending,
|
||||
// so we have to look elsewhere to properly count how many resources have actually finished building.
|
||||
COOK_STAT(auto Timer = CardRepresentationCookStats::UsageStats.TimeAsyncWait());
|
||||
COOK_STAT(Timer.TrackCyclesOnly());
|
||||
bool bReferenced = false;
|
||||
bool bHadToBlock = false;
|
||||
double StartTime = 0;
|
||||
|
||||
// #if WITH_EDITOR
|
||||
// FStaticMeshCompilingManager::Get().FinishCompilation({ StaticMesh });
|
||||
// #endif
|
||||
|
||||
do
|
||||
{
|
||||
ProcessAsyncTasks();
|
||||
|
||||
bReferenced = false;
|
||||
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
if (ReferencedTasks[TaskIndex]->StaticMesh == StaticMesh ||
|
||||
ReferencedTasks[TaskIndex]->GenerateSource == StaticMesh)
|
||||
{
|
||||
bReferenced = true;
|
||||
RescheduleBackgroundTask(ReferencedTasks[TaskIndex], EQueuedWorkPriority::Highest);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bReferenced)
|
||||
{
|
||||
if (!bHadToBlock)
|
||||
{
|
||||
StartTime = FPlatformTime::Seconds();
|
||||
}
|
||||
|
||||
bHadToBlock = true;
|
||||
FPlatformProcess::Sleep(.01f);
|
||||
}
|
||||
}
|
||||
while (bReferenced);
|
||||
|
||||
if (bHadToBlock &&
|
||||
bWarnIfBlocked
|
||||
#if WITH_EDITOR
|
||||
&& !FAutomationTestFramework::Get().GetCurrentTest() // HACK - Don't output this warning during automation test
|
||||
#endif
|
||||
)
|
||||
{
|
||||
UE_LOG(LogStaticMesh, Display, TEXT("Main thread blocked for %.3fs for async card representation build of %s to complete! This can happen if the mesh is rebuilt excessively."),
|
||||
(float)(FPlatformTime::Seconds() - StartTime),
|
||||
*StaticMesh->GetName());
|
||||
}
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::BlockUntilAllBuildsComplete()
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FCardRepresentationAsyncQueue2::BlockUntilAllBuildsComplete)
|
||||
do
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
// FStaticMeshCompilingManager::Get().FinishAllCompilation();
|
||||
// #endif
|
||||
// Reschedule as highest prio since we're explicitly waiting on them
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
RescheduleBackgroundTask(ReferencedTasks[TaskIndex], EQueuedWorkPriority::Highest);
|
||||
}
|
||||
}
|
||||
|
||||
ProcessAsyncTasks();
|
||||
FPlatformProcess::Sleep(.01f);
|
||||
}
|
||||
while (GetNumOutstandingTasks() > 0);
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::Build(FAsyncCardRepresentationTask2* Task, FQueuedThreadPool& BuildThreadPool)
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
// Editor 'force delete' can null any UObject pointers which are seen by reference collecting (eg UProperty or serialized)
|
||||
if (Task->StaticMesh && Task->GenerateSource)
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FCardRepresentationAsyncQueue2::Build);
|
||||
|
||||
const FStaticMeshLODResources& LODModel = Task->GenerateSource->GetRenderData()->LODResources[0];
|
||||
|
||||
Task->bSuccess = MeshUtilities->GenerateCardRepresentationData(
|
||||
Task->StaticMesh->GetName(),
|
||||
Task->SourceMeshData,
|
||||
LODModel,
|
||||
BuildThreadPool,
|
||||
Task->MaterialBlendModes,
|
||||
Task->GenerateSource->GetRenderData()->Bounds,
|
||||
Task->GenerateSource->GetRenderData()->LODResources[0].DistanceFieldData,
|
||||
Task->bGenerateDistanceFieldAsIfTwoSided,
|
||||
*Task->GeneratedCardRepresentation);
|
||||
}
|
||||
|
||||
CompletedTasks.Push(Task);
|
||||
// #endif
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::AddReferencedObjects(FReferenceCollector& Collector)
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
for (int TaskIndex = 0; TaskIndex < ReferencedTasks.Num(); TaskIndex++)
|
||||
{
|
||||
// Make sure none of the UObjects referenced by the async tasks are GC'ed during the task
|
||||
Collector.AddReferencedObject(ReferencedTasks[TaskIndex]->StaticMesh);
|
||||
Collector.AddReferencedObject(ReferencedTasks[TaskIndex]->GenerateSource);
|
||||
}
|
||||
}
|
||||
|
||||
FString FCardRepresentationAsyncQueue2::GetReferencerName() const
|
||||
{
|
||||
return TEXT("FCardRepresentationAsyncQueue2");
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::ProcessAsyncTasks(bool bLimitExecutionTime)
|
||||
{
|
||||
// #if WITH_EDITOR
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FCardRepresentationAsyncQueue2::ProcessAsyncTasks);
|
||||
|
||||
ProcessPendingTasks();
|
||||
|
||||
FObjectCacheContextScope ObjectCacheScope;
|
||||
const double MaxProcessingTime = 0.016f;
|
||||
double StartTime = FPlatformTime::Seconds();
|
||||
while (!bLimitExecutionTime || (FPlatformTime::Seconds() - StartTime) < MaxProcessingTime)
|
||||
{
|
||||
FAsyncCardRepresentationTask2* Task = CompletedTasks.Pop();
|
||||
if (Task == nullptr)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// We want to count each resource built from a DDC miss, so count each iteration of the loop separately.
|
||||
COOK_STAT(auto Timer = CardRepresentationCookStats::UsageStats.TimeSyncWork());
|
||||
|
||||
bool bWasCancelled = false;
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
bWasCancelled = ReferencedTasks.Remove(Task) == 0;
|
||||
}
|
||||
|
||||
if (bWasCancelled)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (Task->AsyncTask)
|
||||
{
|
||||
Task->AsyncTask->EnsureCompletion();
|
||||
Task->AsyncTask.Reset();
|
||||
}
|
||||
|
||||
// Editor 'force delete' can null any UObject pointers which are seen by reference collecting (eg UProperty or serialized)
|
||||
if (Task->StaticMesh && Task->bSuccess)
|
||||
{
|
||||
FCardRepresentationData* OldCardData = Task->StaticMesh->GetRenderData()->LODResources[0].CardRepresentationData;
|
||||
|
||||
// Assign the new data, this is safe because the render threads makes a copy of the pointer at scene proxy creation time.
|
||||
Task->StaticMesh->GetRenderData()->LODResources[0].CardRepresentationData = Task->GeneratedCardRepresentation;
|
||||
|
||||
// Any already created render state needs to be dirtied
|
||||
if (Task->StaticMesh->GetRenderData()->IsInitialized())
|
||||
{
|
||||
for (UStaticMeshComponent* Component : ObjectCacheScope.GetContext().GetStaticMeshComponents(Task->StaticMesh))
|
||||
{
|
||||
if (Component->IsRegistered() && Component->IsRenderStateCreated())
|
||||
{
|
||||
Component->MarkRenderStateDirty();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Rendering thread may still be referencing the old one, use the deferred cleanup interface to delete it next frame when it is safe
|
||||
BeginCleanup(OldCardData);
|
||||
|
||||
// {
|
||||
// TArray<uint8> DerivedData;
|
||||
// // Save built data to DDC
|
||||
// FMemoryWriter Ar(DerivedData, /*bIsPersistent=*/ true);
|
||||
// Ar << *(Task->StaticMesh->GetRenderData()->LODResources[0].CardRepresentationData);
|
||||
// GetDerivedDataCacheRef().Put(*Task->DDCKey, DerivedData, Task->StaticMesh->GetPathName());
|
||||
// COOK_STAT(Timer.AddMiss(DerivedData.Num()));
|
||||
// }
|
||||
}
|
||||
|
||||
delete Task;
|
||||
}
|
||||
// #endif
|
||||
}
|
||||
|
||||
void FCardRepresentationAsyncQueue2::Shutdown()
|
||||
{
|
||||
CancelAllOutstandingBuilds();
|
||||
|
||||
UE_LOG(LogStaticMesh, Log, TEXT("Abandoning remaining async card representation tasks for shutdown"));
|
||||
ThreadPool->Destroy();
|
||||
}
|
@@ -0,0 +1,510 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
#include "MeshUtilitiesPrivate.h"
|
||||
#include "StaticMeshResources.h"
|
||||
#include "MeshCardRepresentation.h"
|
||||
#include "DistanceFieldAtlas.h"
|
||||
#include "MeshRepresentationCommon.h"
|
||||
|
||||
class FGenerateCardMeshContext
|
||||
{
|
||||
public:
|
||||
const FString& MeshName;
|
||||
RTCScene FullMeshEmbreeScene;
|
||||
RTCDevice EmbreeDevice;
|
||||
FCardRepresentationData& OutData;
|
||||
|
||||
FGenerateCardMeshContext(const FString& InMeshName, RTCScene InEmbreeScene, RTCDevice InEmbreeDevice, FCardRepresentationData& InOutData) :
|
||||
MeshName(InMeshName),
|
||||
FullMeshEmbreeScene(InEmbreeScene),
|
||||
EmbreeDevice(InEmbreeDevice),
|
||||
OutData(InOutData)
|
||||
{}
|
||||
};
|
||||
|
||||
class FPlacedCard
|
||||
{
|
||||
public:
|
||||
int32 SliceMin;
|
||||
int32 SliceMax;
|
||||
|
||||
float NearPlane;
|
||||
float FarPlane;
|
||||
FBox Bounds;
|
||||
int32 NumHits;
|
||||
};
|
||||
|
||||
#if USE_EMBREE
|
||||
|
||||
bool IsSurfacePointInsideMesh(const RTCScene& FullMeshEmbreeScene, FVector SurfacePoint, FVector SurfaceNormal, const TArray<FVector4>& RayDirectionsOverHemisphere)
|
||||
{
|
||||
uint32 NumHits = 0;
|
||||
uint32 NumBackFaceHits = 0;
|
||||
|
||||
const FMatrix SurfaceBasis = MeshRepresentation::GetTangentBasisFrisvad(SurfaceNormal);
|
||||
|
||||
for (int32 SampleIndex = 0; SampleIndex < RayDirectionsOverHemisphere.Num(); ++SampleIndex)
|
||||
{
|
||||
FVector RayDirection = SurfaceBasis.TransformVector(RayDirectionsOverHemisphere[SampleIndex]);
|
||||
|
||||
FEmbreeRay EmbreeRay;
|
||||
EmbreeRay.ray.org_x = SurfacePoint.X;
|
||||
EmbreeRay.ray.org_y = SurfacePoint.Y;
|
||||
EmbreeRay.ray.org_z = SurfacePoint.Z;
|
||||
EmbreeRay.ray.dir_x = RayDirection.X;
|
||||
EmbreeRay.ray.dir_y = RayDirection.Y;
|
||||
EmbreeRay.ray.dir_z = RayDirection.Z;
|
||||
EmbreeRay.ray.tnear = 0.1f;
|
||||
EmbreeRay.ray.tfar = FLT_MAX;
|
||||
|
||||
FEmbreeIntersectionContext EmbreeContext;
|
||||
rtcInitIntersectContext(&EmbreeContext);
|
||||
rtcIntersect1(FullMeshEmbreeScene, &EmbreeContext, &EmbreeRay);
|
||||
|
||||
if (EmbreeRay.hit.geomID != RTC_INVALID_GEOMETRY_ID && EmbreeRay.hit.primID != RTC_INVALID_GEOMETRY_ID)
|
||||
{
|
||||
++NumHits;
|
||||
|
||||
if (FVector::DotProduct(RayDirection, EmbreeRay.GetHitNormal()) > 0.0f && !EmbreeContext.IsHitTwoSided())
|
||||
{
|
||||
++NumBackFaceHits;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (NumHits > 0 && NumBackFaceHits > RayDirectionsOverHemisphere.Num() * 0.4f)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
struct FSurfacePoint
|
||||
{
|
||||
float MinT;
|
||||
float HitT;
|
||||
};
|
||||
|
||||
int32 UpdatePlacedCards(TArray<FPlacedCard, TInlineAllocator<16>>& PlacedCards,
|
||||
FVector RayOriginFrame,
|
||||
FVector RayDirection,
|
||||
FVector HeighfieldStepX,
|
||||
FVector HeighfieldStepY,
|
||||
FIntPoint HeighfieldSize,
|
||||
int32 MeshSliceNum,
|
||||
float MaxRayT,
|
||||
int32 MinCardHits,
|
||||
FVector VoxelExtent,
|
||||
const TArray<TArray<FSurfacePoint, TInlineAllocator<16>>>& HeightfieldLayers)
|
||||
{
|
||||
for (int32 PlacedCardIndex = 0; PlacedCardIndex < PlacedCards.Num(); ++PlacedCardIndex)
|
||||
{
|
||||
FPlacedCard& PlacedCard = PlacedCards[PlacedCardIndex];
|
||||
PlacedCard.NearPlane = PlacedCard.SliceMin / float(MeshSliceNum) * MaxRayT;
|
||||
PlacedCard.FarPlane = (PlacedCard.SliceMax / float(MeshSliceNum)) * MaxRayT;
|
||||
PlacedCard.Bounds.Init();
|
||||
PlacedCard.NumHits = 0;
|
||||
}
|
||||
|
||||
for (int32 HeighfieldY = 0; HeighfieldY < HeighfieldSize.Y; ++HeighfieldY)
|
||||
{
|
||||
for (int32 HeighfieldX = 0; HeighfieldX < HeighfieldSize.X; ++HeighfieldX)
|
||||
{
|
||||
const int32 HeightfieldLinearIndex = HeighfieldX + HeighfieldY * HeighfieldSize.X;
|
||||
|
||||
FVector RayOrigin = RayOriginFrame;
|
||||
RayOrigin += (HeighfieldX + 0.5f) * HeighfieldStepX;
|
||||
RayOrigin += (HeighfieldY + 0.5f) * HeighfieldStepY;
|
||||
|
||||
int32 LayerIndex = 0;
|
||||
int32 PlacedCardIndex = 0;
|
||||
|
||||
while (LayerIndex < HeightfieldLayers[HeightfieldLinearIndex].Num() && PlacedCardIndex < PlacedCards.Num())
|
||||
{
|
||||
const FSurfacePoint& SurfacePoint = HeightfieldLayers[HeightfieldLinearIndex][LayerIndex];
|
||||
FPlacedCard& PlacedCard = PlacedCards[PlacedCardIndex];
|
||||
|
||||
if (SurfacePoint.HitT >= PlacedCard.NearPlane && SurfacePoint.HitT <= PlacedCard.FarPlane
|
||||
&& SurfacePoint.MinT <= PlacedCard.NearPlane)
|
||||
{
|
||||
PlacedCard.NumHits += 1;
|
||||
PlacedCard.Bounds += RayOrigin + SurfacePoint.HitT * RayDirection - VoxelExtent;
|
||||
PlacedCard.Bounds += RayOrigin + SurfacePoint.HitT * RayDirection + VoxelExtent;
|
||||
|
||||
++PlacedCardIndex;
|
||||
++LayerIndex;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (SurfacePoint.HitT >= PlacedCard.FarPlane)
|
||||
{
|
||||
++PlacedCardIndex;
|
||||
}
|
||||
else
|
||||
{
|
||||
++LayerIndex;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int32 NumMeshHits = 0;
|
||||
for (int32 PlacedCardIndex = 0; PlacedCardIndex < PlacedCards.Num(); ++PlacedCardIndex)
|
||||
{
|
||||
const FPlacedCard& PlacedCard = PlacedCards[PlacedCardIndex];
|
||||
if (PlacedCard.NumHits >= MinCardHits)
|
||||
{
|
||||
NumMeshHits += PlacedCard.NumHits;
|
||||
}
|
||||
}
|
||||
return NumMeshHits;
|
||||
}
|
||||
|
||||
void SerializePlacedCards(TArray<FPlacedCard, TInlineAllocator<16>>& PlacedCards,
|
||||
int32 LODLevel,
|
||||
int32 Orientation,
|
||||
int32 MinCardHits,
|
||||
const FBox& MeshCardsBounds,
|
||||
FCardRepresentationData& OutData)
|
||||
{
|
||||
for (int32 PlacedCardIndex = 0; PlacedCardIndex < PlacedCards.Num(); ++PlacedCardIndex)
|
||||
{
|
||||
const FPlacedCard& PlacedCard = PlacedCards[PlacedCardIndex];
|
||||
if (PlacedCard.NumHits >= MinCardHits)
|
||||
{
|
||||
const FBox ClampedBox = PlacedCard.Bounds.Overlap(MeshCardsBounds);
|
||||
|
||||
FLumenCardBuildData CardBuildData;
|
||||
CardBuildData.Center = ClampedBox.GetCenter();
|
||||
CardBuildData.Extent = ClampedBox.GetExtent();
|
||||
CardBuildData.Extent = FLumenCardBuildData::TransformFaceExtent(CardBuildData.Extent, Orientation);
|
||||
CardBuildData.Orientation = Orientation;
|
||||
CardBuildData.LODLevel = LODLevel;
|
||||
|
||||
OutData.MeshCardsBuildData.CardBuildData.Add(CardBuildData);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BuildMeshCards(const FBox& MeshBounds, const FGenerateCardMeshContext& Context, FCardRepresentationData& OutData)
|
||||
{
|
||||
static const auto CVarMeshCardRepresentationMinSurface = IConsoleManager::Get().FindTConsoleVariableDataFloat(TEXT("r.MeshCardRepresentation.MinSurface"));
|
||||
const float MinSurfaceThreshold = CVarMeshCardRepresentationMinSurface->GetValueOnAnyThread();
|
||||
|
||||
// Make sure BBox isn't empty and we can generate card representation for it. This handles e.g. infinitely thin planes.
|
||||
const FVector MeshCardsBoundsCenter = MeshBounds.GetCenter();
|
||||
const FVector MeshCardsBoundsExtent = FVector::Max(MeshBounds.GetExtent() + 1.0f, FVector(5.0f));
|
||||
const FBox MeshCardsBounds(MeshCardsBoundsCenter - MeshCardsBoundsExtent, MeshCardsBoundsCenter + MeshCardsBoundsExtent);
|
||||
|
||||
OutData.MeshCardsBuildData.Bounds = MeshCardsBounds;
|
||||
OutData.MeshCardsBuildData.MaxLODLevel = 1;
|
||||
OutData.MeshCardsBuildData.CardBuildData.Reset();
|
||||
|
||||
const float SamplesPerWorldUnit = 1.0f / 10.0f;
|
||||
const int32 MinSamplesPerAxis = 4;
|
||||
const int32 MaxSamplesPerAxis = 64;
|
||||
FIntVector VolumeSizeInVoxels;
|
||||
VolumeSizeInVoxels.X = FMath::Clamp<int32>(MeshCardsBounds.GetSize().X * SamplesPerWorldUnit, MinSamplesPerAxis, MaxSamplesPerAxis);
|
||||
VolumeSizeInVoxels.Y = FMath::Clamp<int32>(MeshCardsBounds.GetSize().Y * SamplesPerWorldUnit, MinSamplesPerAxis, MaxSamplesPerAxis);
|
||||
VolumeSizeInVoxels.Z = FMath::Clamp<int32>(MeshCardsBounds.GetSize().Z * SamplesPerWorldUnit, MinSamplesPerAxis, MaxSamplesPerAxis);
|
||||
|
||||
const FVector VoxelExtent = MeshCardsBounds.GetSize() / FVector(VolumeSizeInVoxels);
|
||||
|
||||
// Generate random ray directions over a hemisphere
|
||||
TArray<FVector4> RayDirectionsOverHemisphere;
|
||||
{
|
||||
FRandomStream RandomStream(0);
|
||||
MeshUtilities::GenerateStratifiedUniformHemisphereSamples(64, RandomStream, RayDirectionsOverHemisphere);
|
||||
}
|
||||
|
||||
for (int32 Orientation = 0; Orientation < 6; ++Orientation)
|
||||
{
|
||||
FIntPoint HeighfieldSize(0, 0);
|
||||
FVector RayDirection(0.0f, 0.0f, 0.0f);
|
||||
FVector RayOriginFrame = MeshCardsBounds.Min;
|
||||
FVector HeighfieldStepX(0.0f, 0.0f, 0.0f);
|
||||
FVector HeighfieldStepY(0.0f, 0.0f, 0.0f);
|
||||
float MaxRayT = 0.0f;
|
||||
int32 MeshSliceNum = 0;
|
||||
|
||||
switch (Orientation / 2)
|
||||
{
|
||||
case 0:
|
||||
MaxRayT = MeshCardsBounds.GetSize().X + 0.1f;
|
||||
MeshSliceNum = VolumeSizeInVoxels.X;
|
||||
HeighfieldSize.X = VolumeSizeInVoxels.Y;
|
||||
HeighfieldSize.Y = VolumeSizeInVoxels.Z;
|
||||
HeighfieldStepX = FVector(0.0f, MeshCardsBounds.GetSize().Y / HeighfieldSize.X, 0.0f);
|
||||
HeighfieldStepY = FVector(0.0f, 0.0f, MeshCardsBounds.GetSize().Z / HeighfieldSize.Y);
|
||||
break;
|
||||
|
||||
case 1:
|
||||
MaxRayT = MeshCardsBounds.GetSize().Y + 0.1f;
|
||||
MeshSliceNum = VolumeSizeInVoxels.Y;
|
||||
HeighfieldSize.X = VolumeSizeInVoxels.X;
|
||||
HeighfieldSize.Y = VolumeSizeInVoxels.Z;
|
||||
HeighfieldStepX = FVector(MeshCardsBounds.GetSize().X / HeighfieldSize.X, 0.0f, 0.0f);
|
||||
HeighfieldStepY = FVector(0.0f, 0.0f, MeshCardsBounds.GetSize().Z / HeighfieldSize.Y);
|
||||
break;
|
||||
|
||||
case 2:
|
||||
MaxRayT = MeshCardsBounds.GetSize().Z + 0.1f;
|
||||
MeshSliceNum = VolumeSizeInVoxels.Z;
|
||||
HeighfieldSize.X = VolumeSizeInVoxels.X;
|
||||
HeighfieldSize.Y = VolumeSizeInVoxels.Y;
|
||||
HeighfieldStepX = FVector(MeshCardsBounds.GetSize().X / HeighfieldSize.X, 0.0f, 0.0f);
|
||||
HeighfieldStepY = FVector(0.0f, MeshCardsBounds.GetSize().Y / HeighfieldSize.Y, 0.0f);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (Orientation)
|
||||
{
|
||||
case 0:
|
||||
RayDirection.X = +1.0f;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
RayDirection.X = -1.0f;
|
||||
RayOriginFrame.X = MeshCardsBounds.Max.X;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
RayDirection.Y = +1.0f;
|
||||
break;
|
||||
|
||||
case 3:
|
||||
RayDirection.Y = -1.0f;
|
||||
RayOriginFrame.Y = MeshCardsBounds.Max.Y;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
RayDirection.Z = +1.0f;
|
||||
break;
|
||||
|
||||
case 5:
|
||||
RayDirection.Z = -1.0f;
|
||||
RayOriginFrame.Z = MeshCardsBounds.Max.Z;
|
||||
break;
|
||||
|
||||
default:
|
||||
check(false);
|
||||
};
|
||||
|
||||
TArray<TArray<FSurfacePoint, TInlineAllocator<16>>> HeightfieldLayers;
|
||||
HeightfieldLayers.SetNum(HeighfieldSize.X * HeighfieldSize.Y);
|
||||
|
||||
// Fill surface points
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FillSurfacePoints);
|
||||
|
||||
TArray<float> Heightfield;
|
||||
Heightfield.SetNum(HeighfieldSize.X * HeighfieldSize.Y);
|
||||
for (int32 HeighfieldY = 0; HeighfieldY < HeighfieldSize.Y; ++HeighfieldY)
|
||||
{
|
||||
for (int32 HeighfieldX = 0; HeighfieldX < HeighfieldSize.X; ++HeighfieldX)
|
||||
{
|
||||
Heightfield[HeighfieldX + HeighfieldY * HeighfieldSize.X] = -1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int32 HeighfieldY = 0; HeighfieldY < HeighfieldSize.Y; ++HeighfieldY)
|
||||
{
|
||||
for (int32 HeighfieldX = 0; HeighfieldX < HeighfieldSize.X; ++HeighfieldX)
|
||||
{
|
||||
FVector RayOrigin = RayOriginFrame;
|
||||
RayOrigin += (HeighfieldX + 0.5f) * HeighfieldStepX;
|
||||
RayOrigin += (HeighfieldY + 0.5f) * HeighfieldStepY;
|
||||
|
||||
float StepTMin = 0.0f;
|
||||
|
||||
for (int32 StepIndex = 0; StepIndex < 64; ++StepIndex)
|
||||
{
|
||||
FEmbreeRay EmbreeRay;
|
||||
EmbreeRay.ray.org_x = RayOrigin.X;
|
||||
EmbreeRay.ray.org_y = RayOrigin.Y;
|
||||
EmbreeRay.ray.org_z = RayOrigin.Z;
|
||||
EmbreeRay.ray.dir_x = RayDirection.X;
|
||||
EmbreeRay.ray.dir_y = RayDirection.Y;
|
||||
EmbreeRay.ray.dir_z = RayDirection.Z;
|
||||
EmbreeRay.ray.tnear = StepTMin;
|
||||
EmbreeRay.ray.tfar = FLT_MAX;
|
||||
|
||||
FEmbreeIntersectionContext EmbreeContext;
|
||||
rtcInitIntersectContext(&EmbreeContext);
|
||||
rtcIntersect1(Context.FullMeshEmbreeScene, &EmbreeContext, &EmbreeRay);
|
||||
|
||||
if (EmbreeRay.hit.geomID != RTC_INVALID_GEOMETRY_ID && EmbreeRay.hit.primID != RTC_INVALID_GEOMETRY_ID)
|
||||
{
|
||||
const FVector SurfacePoint = RayOrigin + RayDirection * EmbreeRay.ray.tfar;
|
||||
const FVector SurfaceNormal = EmbreeRay.GetHitNormal();
|
||||
|
||||
const float NdotD = FVector::DotProduct(RayDirection, SurfaceNormal);
|
||||
const bool bPassCullTest = EmbreeContext.IsHitTwoSided() || NdotD <= 0.0f;
|
||||
const bool bPassProjectionAngleTest = FMath::Abs(NdotD) >= FMath::Cos(75.0f * (PI / 180.0f));
|
||||
|
||||
const float MinDistanceBetweenPoints = (MaxRayT / MeshSliceNum);
|
||||
const bool bPassDistanceToAnotherSurfaceTest = EmbreeRay.ray.tnear <= 0.0f || (EmbreeRay.ray.tfar - EmbreeRay.ray.tnear > MinDistanceBetweenPoints);
|
||||
|
||||
if (bPassCullTest && bPassProjectionAngleTest && bPassDistanceToAnotherSurfaceTest)
|
||||
{
|
||||
const bool bIsInsideMesh = IsSurfacePointInsideMesh(Context.FullMeshEmbreeScene, SurfacePoint, SurfaceNormal, RayDirectionsOverHemisphere);
|
||||
if (!bIsInsideMesh)
|
||||
{
|
||||
HeightfieldLayers[HeighfieldX + HeighfieldY * HeighfieldSize.X].Add(
|
||||
{ EmbreeRay.ray.tnear, EmbreeRay.ray.tfar }
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
StepTMin = EmbreeRay.ray.tfar + 0.01f;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const int32 MinCardHits = FMath::Floor(HeighfieldSize.X * HeighfieldSize.Y * MinSurfaceThreshold);
|
||||
|
||||
|
||||
TArray<FPlacedCard, TInlineAllocator<16>> PlacedCards;
|
||||
int32 PlacedCardsHits = 0;
|
||||
|
||||
// Place a default card
|
||||
{
|
||||
FPlacedCard PlacedCard;
|
||||
PlacedCard.SliceMin = 0;
|
||||
PlacedCard.SliceMax = MeshSliceNum;
|
||||
PlacedCards.Add(PlacedCard);
|
||||
|
||||
PlacedCardsHits = UpdatePlacedCards(PlacedCards,
|
||||
RayOriginFrame,
|
||||
RayDirection,
|
||||
HeighfieldStepX,
|
||||
HeighfieldStepY,
|
||||
HeighfieldSize,
|
||||
MeshSliceNum,
|
||||
MaxRayT,
|
||||
MinCardHits,
|
||||
VoxelExtent,
|
||||
HeightfieldLayers);
|
||||
|
||||
if (PlacedCardsHits < MinCardHits)
|
||||
{
|
||||
PlacedCards.Reset();
|
||||
}
|
||||
}
|
||||
|
||||
SerializePlacedCards(PlacedCards, /*LOD level*/ 0, Orientation, MinCardHits, MeshCardsBounds, OutData);
|
||||
|
||||
// Try to place more cards by splitting existing ones
|
||||
for (uint32 CardPlacementIteration = 0; CardPlacementIteration < 4; ++CardPlacementIteration)
|
||||
{
|
||||
TArray<FPlacedCard, TInlineAllocator<16>> BestPlacedCards;
|
||||
int32 BestPlacedCardHits = PlacedCardsHits;
|
||||
|
||||
for (int32 PlacedCardIndex = 0; PlacedCardIndex < PlacedCards.Num(); ++PlacedCardIndex)
|
||||
{
|
||||
const FPlacedCard& PlacedCard = PlacedCards[PlacedCardIndex];
|
||||
for (int32 SliceIndex = PlacedCard.SliceMin + 2; SliceIndex < PlacedCard.SliceMax; ++SliceIndex)
|
||||
{
|
||||
TArray<FPlacedCard, TInlineAllocator<16>> TempPlacedCards(PlacedCards);
|
||||
|
||||
FPlacedCard NewPlacedCard;
|
||||
NewPlacedCard.SliceMin = SliceIndex;
|
||||
NewPlacedCard.SliceMax = PlacedCard.SliceMax;
|
||||
|
||||
TempPlacedCards[PlacedCardIndex].SliceMax = SliceIndex - 1;
|
||||
TempPlacedCards.Insert(NewPlacedCard, PlacedCardIndex + 1);
|
||||
|
||||
const int32 NumHits = UpdatePlacedCards(
|
||||
TempPlacedCards,
|
||||
RayOriginFrame,
|
||||
RayDirection,
|
||||
HeighfieldStepX,
|
||||
HeighfieldStepY,
|
||||
HeighfieldSize,
|
||||
MeshSliceNum,
|
||||
MaxRayT,
|
||||
MinCardHits,
|
||||
VoxelExtent,
|
||||
HeightfieldLayers);
|
||||
|
||||
if (NumHits > BestPlacedCardHits)
|
||||
{
|
||||
BestPlacedCards = TempPlacedCards;
|
||||
BestPlacedCardHits = NumHits;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (BestPlacedCardHits >= PlacedCardsHits + MinCardHits)
|
||||
{
|
||||
PlacedCards = BestPlacedCards;
|
||||
PlacedCardsHits = BestPlacedCardHits;
|
||||
}
|
||||
}
|
||||
|
||||
SerializePlacedCards(PlacedCards, /*LOD level*/ 1, Orientation, MinCardHits, MeshCardsBounds, OutData);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // #if USE_EMBREE
|
||||
|
||||
bool FMeshUtilities2::GenerateCardRepresentationData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
const FDistanceFieldVolumeData* DistanceFieldVolumeData,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FCardRepresentationData& OutData)
|
||||
{
|
||||
#if USE_EMBREE
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FMeshUtilities2::GenerateCardRepresentationData);
|
||||
const double StartTime = FPlatformTime::Seconds();
|
||||
|
||||
FEmbreeScene EmbreeScene;
|
||||
MeshRepresentation::SetupEmbreeScene(MeshName,
|
||||
SourceMeshData,
|
||||
LODModel,
|
||||
MaterialBlendModes,
|
||||
bGenerateAsIfTwoSided,
|
||||
EmbreeScene);
|
||||
|
||||
if (!EmbreeScene.EmbreeScene)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
FGenerateCardMeshContext Context(MeshName, EmbreeScene.EmbreeScene, EmbreeScene.EmbreeDevice, OutData);
|
||||
|
||||
// Note: must operate on the SDF bounds because SDF generation can expand the mesh's bounds
|
||||
BuildMeshCards(DistanceFieldVolumeData ? DistanceFieldVolumeData->LocalSpaceMeshBounds : Bounds.GetBox(), Context, OutData);
|
||||
|
||||
MeshRepresentation::DeleteEmbreeScene(EmbreeScene);
|
||||
|
||||
const float TimeElapsed = (float)(FPlatformTime::Seconds() - StartTime);
|
||||
|
||||
if (TimeElapsed > 1.0f)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Log, TEXT("Finished mesh card build in %.1fs %s"),
|
||||
TimeElapsed,
|
||||
*MeshName);
|
||||
}
|
||||
|
||||
return true;
|
||||
#else
|
||||
UE_LOG(LogMeshUtilities, Warning, TEXT("Platform did not set USE_EMBREE, GenerateCardRepresentationData failed."));
|
||||
return false;
|
||||
#endif
|
||||
}
|
@@ -0,0 +1,554 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
#include "MeshUtilitiesPrivate.h"
|
||||
#include "RawMesh.h"
|
||||
#include "StaticMeshResources.h"
|
||||
#include "DistanceFieldAtlas.h"
|
||||
#include "MeshRepresentationCommon.h"
|
||||
#include "Async/ParallelFor.h"
|
||||
|
||||
#if USE_EMBREE
|
||||
|
||||
|
||||
class FEmbreePointQueryContext : public RTCPointQueryContext
|
||||
{
|
||||
public:
|
||||
RTCGeometry MeshGeometry;
|
||||
int32 NumTriangles;
|
||||
};
|
||||
|
||||
bool EmbreePointQueryFunction(RTCPointQueryFunctionArguments* args)
|
||||
{
|
||||
const FEmbreePointQueryContext* Context = (const FEmbreePointQueryContext*)args->context;
|
||||
|
||||
check(args->userPtr);
|
||||
float& ClosestDistanceSq = *(float*)(args->userPtr);
|
||||
|
||||
const int32 TriangleIndex = args->primID;
|
||||
check(TriangleIndex < Context->NumTriangles);
|
||||
|
||||
const FVector* VertexBuffer = (const FVector*)rtcGetGeometryBufferData(Context->MeshGeometry, RTC_BUFFER_TYPE_VERTEX, 0);
|
||||
const uint32* IndexBuffer = (const uint32*)rtcGetGeometryBufferData(Context->MeshGeometry, RTC_BUFFER_TYPE_INDEX, 0);
|
||||
|
||||
const uint32 I0 = IndexBuffer[TriangleIndex * 3 + 0];
|
||||
const uint32 I1 = IndexBuffer[TriangleIndex * 3 + 1];
|
||||
const uint32 I2 = IndexBuffer[TriangleIndex * 3 + 2];
|
||||
|
||||
const FVector V0 = VertexBuffer[I0];
|
||||
const FVector V1 = VertexBuffer[I1];
|
||||
const FVector V2 = VertexBuffer[I2];
|
||||
|
||||
const FVector QueryPosition(args->query->x, args->query->y, args->query->z);
|
||||
const FVector ClosestPoint = FMath::ClosestPointOnTriangleToPoint(QueryPosition, V0, V1, V2);
|
||||
const float QueryDistanceSq = (ClosestPoint - QueryPosition).SizeSquared();
|
||||
|
||||
if (QueryDistanceSq < ClosestDistanceSq)
|
||||
{
|
||||
ClosestDistanceSq = QueryDistanceSq;
|
||||
|
||||
bool bShrinkQuery = true;
|
||||
|
||||
if (bShrinkQuery)
|
||||
{
|
||||
args->query->radius = FMath::Sqrt(ClosestDistanceSq);
|
||||
// Return true to indicate that the query radius has shrunk
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Return false to indicate that the query radius hasn't changed
|
||||
return false;
|
||||
}
|
||||
|
||||
static int32 ComputeLinearVoxelIndex(FIntVector VoxelCoordinate, FIntVector VolumeDimensions)
|
||||
{
|
||||
return (VoxelCoordinate.Z * VolumeDimensions.Y + VoxelCoordinate.Y) * VolumeDimensions.X + VoxelCoordinate.X;
|
||||
}
|
||||
|
||||
class FSparseMeshDistanceFieldAsyncTask
|
||||
{
|
||||
public:
|
||||
FSparseMeshDistanceFieldAsyncTask(
|
||||
const FEmbreeScene& InEmbreeScene,
|
||||
const TArray<FVector4>* InSampleDirections,
|
||||
float InLocalSpaceTraceDistance,
|
||||
FBox InVolumeBounds,
|
||||
float InLocalToVolumeScale,
|
||||
FVector2D InDistanceFieldToVolumeScaleBias,
|
||||
FIntVector InBrickCoordinate,
|
||||
FIntVector InIndirectionSize,
|
||||
bool bInUsePointQuery)
|
||||
:
|
||||
EmbreeScene(InEmbreeScene),
|
||||
SampleDirections(InSampleDirections),
|
||||
LocalSpaceTraceDistance(InLocalSpaceTraceDistance),
|
||||
VolumeBounds(InVolumeBounds),
|
||||
LocalToVolumeScale(InLocalToVolumeScale),
|
||||
DistanceFieldToVolumeScaleBias(InDistanceFieldToVolumeScaleBias),
|
||||
BrickCoordinate(InBrickCoordinate),
|
||||
IndirectionSize(InIndirectionSize),
|
||||
bUsePointQuery(bInUsePointQuery),
|
||||
BrickMaxDistance(MIN_uint8),
|
||||
BrickMinDistance(MAX_uint8)
|
||||
{}
|
||||
|
||||
void DoWork();
|
||||
|
||||
// Readonly inputs
|
||||
const FEmbreeScene& EmbreeScene;
|
||||
const TArray<FVector4>* SampleDirections;
|
||||
float LocalSpaceTraceDistance;
|
||||
FBox VolumeBounds;
|
||||
float LocalToVolumeScale;
|
||||
FVector2D DistanceFieldToVolumeScaleBias;
|
||||
FIntVector BrickCoordinate;
|
||||
FIntVector IndirectionSize;
|
||||
bool bUsePointQuery;
|
||||
|
||||
// Output
|
||||
uint8 BrickMaxDistance;
|
||||
uint8 BrickMinDistance;
|
||||
TArray<uint8> DistanceFieldVolume;
|
||||
};
|
||||
|
||||
int32 DebugX = 0;
|
||||
int32 DebugY = 0;
|
||||
int32 DebugZ = 0;
|
||||
|
||||
void FSparseMeshDistanceFieldAsyncTask::DoWork()
|
||||
{
|
||||
TRACE_CPUPROFILER_EVENT_SCOPE(FSparseMeshDistanceFieldAsyncTask::DoWork);
|
||||
|
||||
const FVector IndirectionVoxelSize = VolumeBounds.GetSize() / FVector(IndirectionSize);
|
||||
const FVector DistanceFieldVoxelSize = IndirectionVoxelSize / FVector(DistanceField::UniqueDataBrickSize);
|
||||
const FVector BrickMinPosition = VolumeBounds.Min + FVector(BrickCoordinate) * IndirectionVoxelSize;
|
||||
|
||||
DistanceFieldVolume.Empty(DistanceField::BrickSize * DistanceField::BrickSize * DistanceField::BrickSize);
|
||||
DistanceFieldVolume.AddZeroed(DistanceField::BrickSize * DistanceField::BrickSize * DistanceField::BrickSize);
|
||||
|
||||
for (int32 ZIndex = 0; ZIndex < DistanceField::BrickSize; ZIndex++)
|
||||
{
|
||||
for (int32 YIndex = 0; YIndex < DistanceField::BrickSize; YIndex++)
|
||||
{
|
||||
for (int32 XIndex = 0; XIndex < DistanceField::BrickSize; XIndex++)
|
||||
{
|
||||
if (XIndex == DebugX && YIndex == DebugY && ZIndex == DebugZ)
|
||||
{
|
||||
int32 DebugBreak = 0;
|
||||
}
|
||||
|
||||
const FVector VoxelPosition = FVector(XIndex, YIndex, ZIndex) * DistanceFieldVoxelSize + BrickMinPosition;
|
||||
const int32 Index = (ZIndex * DistanceField::BrickSize * DistanceField::BrickSize + YIndex * DistanceField::BrickSize + XIndex);
|
||||
|
||||
float MinLocalSpaceDistance = LocalSpaceTraceDistance;
|
||||
|
||||
bool bTraceRays = true;
|
||||
|
||||
if (bUsePointQuery)
|
||||
{
|
||||
RTCPointQuery PointQuery;
|
||||
PointQuery.x = VoxelPosition.X;
|
||||
PointQuery.y = VoxelPosition.Y;
|
||||
PointQuery.z = VoxelPosition.Z;
|
||||
PointQuery.time = 0;
|
||||
PointQuery.radius = LocalSpaceTraceDistance;
|
||||
|
||||
FEmbreePointQueryContext QueryContext;
|
||||
rtcInitPointQueryContext(&QueryContext);
|
||||
QueryContext.MeshGeometry = EmbreeScene.Geometry.InternalGeometry;
|
||||
QueryContext.NumTriangles = EmbreeScene.Geometry.TriangleDescs.Num();
|
||||
float ClosestUnsignedDistanceSq = (LocalSpaceTraceDistance * 2.0f) * (LocalSpaceTraceDistance * 2.0f);
|
||||
rtcPointQuery(EmbreeScene.EmbreeScene, &PointQuery, &QueryContext, EmbreePointQueryFunction, &ClosestUnsignedDistanceSq);
|
||||
|
||||
const float ClosestDistance = FMath::Sqrt(ClosestUnsignedDistanceSq);
|
||||
bTraceRays = ClosestDistance <= LocalSpaceTraceDistance;
|
||||
MinLocalSpaceDistance = FMath::Min(MinLocalSpaceDistance, ClosestDistance);
|
||||
}
|
||||
|
||||
if (bTraceRays)
|
||||
{
|
||||
int32 Hit = 0;
|
||||
int32 HitBack = 0;
|
||||
|
||||
for (int32 SampleIndex = 0; SampleIndex < SampleDirections->Num(); SampleIndex++)
|
||||
{
|
||||
const FVector UnitRayDirection = (*SampleDirections)[SampleIndex];
|
||||
const float PullbackEpsilon = 1.e-4f;
|
||||
// Pull back the starting position slightly to make sure we hit a triangle that VoxelPosition is exactly on.
|
||||
// This happens a lot with boxes, since we trace from voxel corners.
|
||||
const FVector StartPosition = VoxelPosition - PullbackEpsilon * LocalSpaceTraceDistance * UnitRayDirection;
|
||||
const FVector EndPosition = VoxelPosition + UnitRayDirection * LocalSpaceTraceDistance;
|
||||
|
||||
if (FMath::LineBoxIntersection(VolumeBounds, VoxelPosition, EndPosition, UnitRayDirection))
|
||||
{
|
||||
FEmbreeRay EmbreeRay;
|
||||
|
||||
FVector RayDirection = EndPosition - VoxelPosition;
|
||||
EmbreeRay.ray.org_x = StartPosition.X;
|
||||
EmbreeRay.ray.org_y = StartPosition.Y;
|
||||
EmbreeRay.ray.org_z = StartPosition.Z;
|
||||
EmbreeRay.ray.dir_x = RayDirection.X;
|
||||
EmbreeRay.ray.dir_y = RayDirection.Y;
|
||||
EmbreeRay.ray.dir_z = RayDirection.Z;
|
||||
EmbreeRay.ray.tnear = 0;
|
||||
EmbreeRay.ray.tfar = 1.0f;
|
||||
|
||||
FEmbreeIntersectionContext EmbreeContext;
|
||||
rtcInitIntersectContext(&EmbreeContext);
|
||||
rtcIntersect1(EmbreeScene.EmbreeScene, &EmbreeContext, &EmbreeRay);
|
||||
|
||||
if (EmbreeRay.hit.geomID != RTC_INVALID_GEOMETRY_ID && EmbreeRay.hit.primID != RTC_INVALID_GEOMETRY_ID)
|
||||
{
|
||||
check(EmbreeContext.ElementIndex != -1);
|
||||
Hit++;
|
||||
|
||||
const FVector HitNormal = EmbreeRay.GetHitNormal();
|
||||
|
||||
if (FVector::DotProduct(UnitRayDirection, HitNormal) > 0 && !EmbreeContext.IsHitTwoSided())
|
||||
{
|
||||
HitBack++;
|
||||
}
|
||||
|
||||
if (!bUsePointQuery)
|
||||
{
|
||||
const float CurrentDistance = EmbreeRay.ray.tfar * LocalSpaceTraceDistance;
|
||||
|
||||
if (CurrentDistance < MinLocalSpaceDistance)
|
||||
{
|
||||
MinLocalSpaceDistance = CurrentDistance;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Consider this voxel 'inside' an object if we hit a significant number of backfaces
|
||||
if (Hit > 0 && HitBack > .25f * SampleDirections->Num())
|
||||
{
|
||||
MinLocalSpaceDistance *= -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Transform to the tracing shader's Volume space
|
||||
const float VolumeSpaceDistance = MinLocalSpaceDistance * LocalToVolumeScale;
|
||||
// Transform to the Distance Field texture's space
|
||||
const float RescaledDistance = (VolumeSpaceDistance - DistanceFieldToVolumeScaleBias.Y) / DistanceFieldToVolumeScaleBias.X;
|
||||
check(DistanceField::DistanceFieldFormat == PF_G8);
|
||||
const uint8 QuantizedDistance = FMath::Clamp<int32>(FMath::FloorToInt(RescaledDistance * 255.0f + .5f), 0, 255);
|
||||
DistanceFieldVolume[Index] = QuantizedDistance;
|
||||
BrickMaxDistance = FMath::Max(BrickMaxDistance, QuantizedDistance);
|
||||
BrickMinDistance = FMath::Min(BrickMinDistance, QuantizedDistance);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FMeshUtilities2::GenerateSignedDistanceFieldVolumeData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
float DistanceFieldResolutionScale,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FDistanceFieldVolumeData& OutData)
|
||||
{
|
||||
if (DistanceFieldResolutionScale > 0)
|
||||
{
|
||||
const double StartTime = FPlatformTime::Seconds();
|
||||
|
||||
FEmbreeScene EmbreeScene;
|
||||
MeshRepresentation::SetupEmbreeScene(MeshName,
|
||||
SourceMeshData,
|
||||
LODModel,
|
||||
MaterialBlendModes,
|
||||
bGenerateAsIfTwoSided,
|
||||
EmbreeScene);
|
||||
|
||||
check(EmbreeScene.bUseEmbree);
|
||||
|
||||
bool bMostlyTwoSided;
|
||||
{
|
||||
uint32 NumTrianglesTotal = 0;
|
||||
uint32 NumTwoSidedTriangles = 0;
|
||||
|
||||
for (int32 SectionIndex = 0; SectionIndex < LODModel.Sections.Num(); SectionIndex++)
|
||||
{
|
||||
const FStaticMeshSection& Section = LODModel.Sections[SectionIndex];
|
||||
|
||||
if (MaterialBlendModes.IsValidIndex(Section.MaterialIndex))
|
||||
{
|
||||
NumTrianglesTotal += Section.NumTriangles;
|
||||
|
||||
if (MaterialBlendModes[Section.MaterialIndex].bTwoSided)
|
||||
{
|
||||
NumTwoSidedTriangles += Section.NumTriangles;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bMostlyTwoSided = NumTwoSidedTriangles * 4 >= NumTrianglesTotal || bGenerateAsIfTwoSided;
|
||||
}
|
||||
|
||||
// Whether to use an Embree Point Query to compute the closest unsigned distance. Rays will only be traced to determine backfaces visible for sign.
|
||||
const bool bUsePointQuery = true;
|
||||
|
||||
TArray<FVector4> SampleDirections;
|
||||
{
|
||||
const int32 NumVoxelDistanceSamples = bUsePointQuery ? 120 : 1200;
|
||||
FRandomStream RandomStream(0);
|
||||
MeshUtilities::GenerateStratifiedUniformHemisphereSamples(NumVoxelDistanceSamples, RandomStream, SampleDirections);
|
||||
TArray<FVector4> OtherHemisphereSamples;
|
||||
MeshUtilities::GenerateStratifiedUniformHemisphereSamples(NumVoxelDistanceSamples, RandomStream, OtherHemisphereSamples);
|
||||
|
||||
for (int32 i = 0; i < OtherHemisphereSamples.Num(); i++)
|
||||
{
|
||||
FVector4 Sample = OtherHemisphereSamples[i];
|
||||
Sample.Z *= -1;
|
||||
SampleDirections.Add(Sample);
|
||||
}
|
||||
}
|
||||
|
||||
static const auto CVar = IConsoleManager::Get().FindTConsoleVariableDataInt(TEXT("r.DistanceFields.MaxPerMeshResolution"));
|
||||
const int32 PerMeshMax = CVar->GetValueOnAnyThread();
|
||||
|
||||
// Meshes with explicit artist-specified scale can go higher
|
||||
const int32 MaxNumBlocksOneDim = FMath::Min<int32>(FMath::DivideAndRoundNearest(DistanceFieldResolutionScale <= 1 ? PerMeshMax / 2 : PerMeshMax, DistanceField::UniqueDataBrickSize), DistanceField::MaxIndirectionDimension - 1);
|
||||
|
||||
static const auto CVarDensity = IConsoleManager::Get().FindTConsoleVariableDataFloat(TEXT("r.DistanceFields.DefaultVoxelDensity"));
|
||||
const float VoxelDensity = CVarDensity->GetValueOnAnyThread();
|
||||
|
||||
const float NumVoxelsPerLocalSpaceUnit = VoxelDensity * DistanceFieldResolutionScale;
|
||||
FBox LocalSpaceMeshBounds(Bounds.GetBox());
|
||||
|
||||
// Make sure the mesh bounding box has positive extents to handle planes
|
||||
{
|
||||
FVector MeshBoundsCenter = LocalSpaceMeshBounds.GetCenter();
|
||||
FVector MeshBoundsExtent = FVector::Max(LocalSpaceMeshBounds.GetExtent(), FVector(1.0f, 1.0f, 1.0f));
|
||||
LocalSpaceMeshBounds.Min = MeshBoundsCenter - MeshBoundsExtent;
|
||||
LocalSpaceMeshBounds.Max = MeshBoundsCenter + MeshBoundsExtent;
|
||||
}
|
||||
|
||||
// We sample on voxel corners and use central differencing for gradients, so a box mesh using two-sided materials whose vertices lie on LocalSpaceMeshBounds produces a zero gradient on intersection
|
||||
// Expand the mesh bounds by a fraction of a voxel to allow room for a pullback on the hit location for computing the gradient.
|
||||
// Only expand for two sided meshes as this adds significant Mesh SDF tracing cost
|
||||
if (bMostlyTwoSided)
|
||||
{
|
||||
const FVector DesiredDimensions = FVector(LocalSpaceMeshBounds.GetSize() * FVector(NumVoxelsPerLocalSpaceUnit / (float)DistanceField::UniqueDataBrickSize));
|
||||
const FIntVector Mip0IndirectionDimensions = FIntVector(
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.X), 1, MaxNumBlocksOneDim),
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.Y), 1, MaxNumBlocksOneDim),
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.Z), 1, MaxNumBlocksOneDim));
|
||||
|
||||
const float CentralDifferencingExpandInVoxels = .25f;
|
||||
const FVector TexelObjectSpaceSize = LocalSpaceMeshBounds.GetSize() / FVector(Mip0IndirectionDimensions * DistanceField::UniqueDataBrickSize - FIntVector(2 * CentralDifferencingExpandInVoxels));
|
||||
LocalSpaceMeshBounds = LocalSpaceMeshBounds.ExpandBy(TexelObjectSpaceSize);
|
||||
}
|
||||
|
||||
// The tracing shader uses a Volume space that is normalized by the maximum extent, to keep Volume space within [-1, 1], we must match that behavior when encoding
|
||||
const float LocalToVolumeScale = 1.0f / LocalSpaceMeshBounds.GetExtent().GetMax();
|
||||
|
||||
const FVector DesiredDimensions = FVector(LocalSpaceMeshBounds.GetSize() * FVector(NumVoxelsPerLocalSpaceUnit / (float)DistanceField::UniqueDataBrickSize));
|
||||
const FIntVector Mip0IndirectionDimensions = FIntVector(
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.X), 1, MaxNumBlocksOneDim),
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.Y), 1, MaxNumBlocksOneDim),
|
||||
FMath::Clamp(FMath::RoundToInt(DesiredDimensions.Z), 1, MaxNumBlocksOneDim));
|
||||
|
||||
TArray<uint8> StreamableMipData;
|
||||
|
||||
for (int32 MipIndex = 0; MipIndex < DistanceField::NumMips; MipIndex++)
|
||||
{
|
||||
const FIntVector IndirectionDimensions = FIntVector(
|
||||
FMath::DivideAndRoundUp(Mip0IndirectionDimensions.X, 1 << MipIndex),
|
||||
FMath::DivideAndRoundUp(Mip0IndirectionDimensions.Y, 1 << MipIndex),
|
||||
FMath::DivideAndRoundUp(Mip0IndirectionDimensions.Z, 1 << MipIndex));
|
||||
|
||||
// Expand to guarantee one voxel border for gradient reconstruction using bilinear filtering
|
||||
const FVector TexelObjectSpaceSize = LocalSpaceMeshBounds.GetSize() / FVector(IndirectionDimensions * DistanceField::UniqueDataBrickSize - FIntVector(2 * DistanceField::MeshDistanceFieldObjectBorder));
|
||||
const FBox DistanceFieldVolumeBounds = LocalSpaceMeshBounds.ExpandBy(TexelObjectSpaceSize);
|
||||
|
||||
const FVector IndirectionVoxelSize = DistanceFieldVolumeBounds.GetSize() / FVector(IndirectionDimensions);
|
||||
const float IndirectionVoxelRadius = IndirectionVoxelSize.Size();
|
||||
|
||||
const FVector VolumeSpaceDistanceFieldVoxelSize = IndirectionVoxelSize * LocalToVolumeScale / FVector(DistanceField::UniqueDataBrickSize);
|
||||
const float MaxDistanceForEncoding = VolumeSpaceDistanceFieldVoxelSize.Size() * DistanceField::BandSizeInVoxels;
|
||||
const float LocalSpaceTraceDistance = MaxDistanceForEncoding / LocalToVolumeScale;
|
||||
const FVector2D DistanceFieldToVolumeScaleBias(2.0f * MaxDistanceForEncoding, -MaxDistanceForEncoding);
|
||||
|
||||
TArray<FSparseMeshDistanceFieldAsyncTask> AsyncTasks;
|
||||
AsyncTasks.Reserve(IndirectionDimensions.X * IndirectionDimensions.Y * IndirectionDimensions.Z / 8);
|
||||
|
||||
for (int32 ZIndex = 0; ZIndex < IndirectionDimensions.Z; ZIndex++)
|
||||
{
|
||||
for (int32 YIndex = 0; YIndex < IndirectionDimensions.Y; YIndex++)
|
||||
{
|
||||
for (int32 XIndex = 0; XIndex < IndirectionDimensions.X; XIndex++)
|
||||
{
|
||||
AsyncTasks.Emplace(
|
||||
EmbreeScene,
|
||||
&SampleDirections,
|
||||
LocalSpaceTraceDistance,
|
||||
DistanceFieldVolumeBounds,
|
||||
LocalToVolumeScale,
|
||||
DistanceFieldToVolumeScaleBias,
|
||||
FIntVector(XIndex, YIndex, ZIndex),
|
||||
IndirectionDimensions,
|
||||
bUsePointQuery);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool bMultiThreaded = true;
|
||||
|
||||
if (bMultiThreaded)
|
||||
{
|
||||
EParallelForFlags Flags = EParallelForFlags::BackgroundPriority | EParallelForFlags::Unbalanced;
|
||||
|
||||
ParallelForTemplate(AsyncTasks.Num(), [&AsyncTasks](int32 TaskIndex)
|
||||
{
|
||||
AsyncTasks[TaskIndex].DoWork();
|
||||
}, Flags);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (FSparseMeshDistanceFieldAsyncTask& AsyncTask : AsyncTasks)
|
||||
{
|
||||
AsyncTask.DoWork();
|
||||
}
|
||||
}
|
||||
|
||||
FSparseDistanceFieldMip& OutMip = OutData.Mips[MipIndex];
|
||||
TArray<uint32> IndirectionTable;
|
||||
IndirectionTable.Empty(IndirectionDimensions.X * IndirectionDimensions.Y * IndirectionDimensions.Z);
|
||||
IndirectionTable.AddUninitialized(IndirectionDimensions.X * IndirectionDimensions.Y * IndirectionDimensions.Z);
|
||||
|
||||
for (int32 i = 0; i < IndirectionTable.Num(); i++)
|
||||
{
|
||||
IndirectionTable[i] = DistanceField::InvalidBrickIndex;
|
||||
}
|
||||
|
||||
TArray<FSparseMeshDistanceFieldAsyncTask*> ValidBricks;
|
||||
ValidBricks.Empty(AsyncTasks.Num());
|
||||
|
||||
for (int32 TaskIndex = 0; TaskIndex < AsyncTasks.Num(); TaskIndex++)
|
||||
{
|
||||
if (AsyncTasks[TaskIndex].BrickMinDistance < MAX_uint8 && AsyncTasks[TaskIndex].BrickMaxDistance > MIN_uint8)
|
||||
{
|
||||
ValidBricks.Add(&AsyncTasks[TaskIndex]);
|
||||
}
|
||||
}
|
||||
|
||||
const uint32 NumBricks = ValidBricks.Num();
|
||||
|
||||
const uint32 BrickSizeBytes = DistanceField::BrickSize * DistanceField::BrickSize * DistanceField::BrickSize * GPixelFormats[DistanceField::DistanceFieldFormat].BlockBytes;
|
||||
|
||||
TArray<uint8> DistanceFieldBrickData;
|
||||
DistanceFieldBrickData.Empty(BrickSizeBytes * NumBricks);
|
||||
DistanceFieldBrickData.AddUninitialized(BrickSizeBytes * NumBricks);
|
||||
|
||||
for (int32 BrickIndex = 0; BrickIndex < ValidBricks.Num(); BrickIndex++)
|
||||
{
|
||||
const FSparseMeshDistanceFieldAsyncTask& Brick = *ValidBricks[BrickIndex];
|
||||
const int32 IndirectionIndex = ComputeLinearVoxelIndex(Brick.BrickCoordinate, IndirectionDimensions);
|
||||
IndirectionTable[IndirectionIndex] = BrickIndex;
|
||||
|
||||
check(BrickSizeBytes == Brick.DistanceFieldVolume.Num() * Brick.DistanceFieldVolume.GetTypeSize());
|
||||
FPlatformMemory::Memcpy(&DistanceFieldBrickData[BrickIndex * BrickSizeBytes], Brick.DistanceFieldVolume.GetData(), Brick.DistanceFieldVolume.Num() * Brick.DistanceFieldVolume.GetTypeSize());
|
||||
}
|
||||
|
||||
const int32 IndirectionTableBytes = IndirectionTable.Num() * IndirectionTable.GetTypeSize();
|
||||
const int32 MipDataBytes = IndirectionTableBytes + DistanceFieldBrickData.Num();
|
||||
|
||||
if (MipIndex == DistanceField::NumMips - 1)
|
||||
{
|
||||
OutData.AlwaysLoadedMip.Empty(MipDataBytes);
|
||||
OutData.AlwaysLoadedMip.AddUninitialized(MipDataBytes);
|
||||
|
||||
FPlatformMemory::Memcpy(&OutData.AlwaysLoadedMip[0], IndirectionTable.GetData(), IndirectionTableBytes);
|
||||
|
||||
if (DistanceFieldBrickData.Num() > 0)
|
||||
{
|
||||
FPlatformMemory::Memcpy(&OutData.AlwaysLoadedMip[IndirectionTableBytes], DistanceFieldBrickData.GetData(), DistanceFieldBrickData.Num());
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
OutMip.BulkOffset = StreamableMipData.Num();
|
||||
StreamableMipData.AddUninitialized(MipDataBytes);
|
||||
OutMip.BulkSize = StreamableMipData.Num() - OutMip.BulkOffset;
|
||||
checkf(OutMip.BulkSize > 0, TEXT("BulkSize was 0 for %s with %ux%ux%u indirection"), *MeshName, IndirectionDimensions.X, IndirectionDimensions.Y, IndirectionDimensions.Z);
|
||||
|
||||
FPlatformMemory::Memcpy(&StreamableMipData[OutMip.BulkOffset], IndirectionTable.GetData(), IndirectionTableBytes);
|
||||
|
||||
if (DistanceFieldBrickData.Num() > 0)
|
||||
{
|
||||
FPlatformMemory::Memcpy(&StreamableMipData[OutMip.BulkOffset + IndirectionTableBytes], DistanceFieldBrickData.GetData(), DistanceFieldBrickData.Num());
|
||||
}
|
||||
}
|
||||
|
||||
OutMip.IndirectionDimensions = IndirectionDimensions;
|
||||
OutMip.DistanceFieldToVolumeScaleBias = DistanceFieldToVolumeScaleBias;
|
||||
OutMip.NumDistanceFieldBricks = NumBricks;
|
||||
|
||||
// Account for the border voxels we added
|
||||
const FVector VirtualUVMin = FVector(DistanceField::MeshDistanceFieldObjectBorder) / FVector(IndirectionDimensions * DistanceField::UniqueDataBrickSize);
|
||||
const FVector VirtualUVSize = FVector(IndirectionDimensions * DistanceField::UniqueDataBrickSize - FIntVector(2 * DistanceField::MeshDistanceFieldObjectBorder)) / FVector(IndirectionDimensions * DistanceField::UniqueDataBrickSize);
|
||||
|
||||
const FVector VolumePositionExtent = LocalSpaceMeshBounds.GetExtent() * LocalToVolumeScale;
|
||||
|
||||
// [-VolumePositionExtent, VolumePositionExtent] -> [VirtualUVMin, VirtualUVMin + VirtualUVSize]
|
||||
OutMip.VolumeToVirtualUVScale = VirtualUVSize / (2 * VolumePositionExtent);
|
||||
OutMip.VolumeToVirtualUVAdd = VolumePositionExtent * OutMip.VolumeToVirtualUVScale + VirtualUVMin;
|
||||
}
|
||||
|
||||
MeshRepresentation::DeleteEmbreeScene(EmbreeScene);
|
||||
|
||||
OutData.bMostlyTwoSided = bMostlyTwoSided;
|
||||
OutData.LocalSpaceMeshBounds = LocalSpaceMeshBounds;
|
||||
|
||||
OutData.StreamableMips.Lock(LOCK_READ_WRITE);
|
||||
uint8* Ptr = (uint8*)OutData.StreamableMips.Realloc(StreamableMipData.Num());
|
||||
FMemory::Memcpy(Ptr, StreamableMipData.GetData(), StreamableMipData.Num());
|
||||
OutData.StreamableMips.Unlock();
|
||||
OutData.StreamableMips.SetBulkDataFlags(BULKDATA_Force_NOT_InlinePayload);
|
||||
|
||||
const float BuildTime = (float)(FPlatformTime::Seconds() - StartTime);
|
||||
|
||||
if (BuildTime > 1.0f)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Log, TEXT("完成:距离场构建 %.1fs - %ux%ux%u 稀疏距离场, %.1fMb total, %.1fMb 总是加载, %u%% occupied, %u 三角形, %s"),
|
||||
BuildTime,
|
||||
Mip0IndirectionDimensions.X * DistanceField::UniqueDataBrickSize,
|
||||
Mip0IndirectionDimensions.Y * DistanceField::UniqueDataBrickSize,
|
||||
Mip0IndirectionDimensions.Z * DistanceField::UniqueDataBrickSize,
|
||||
(OutData.GetResourceSizeBytes() + OutData.StreamableMips.GetBulkDataSize()) / 1024.0f / 1024.0f,
|
||||
(OutData.AlwaysLoadedMip.GetAllocatedSize()) / 1024.0f / 1024.0f,
|
||||
FMath::RoundToInt(100.0f * OutData.Mips[0].NumDistanceFieldBricks / (float)(Mip0IndirectionDimensions.X * Mip0IndirectionDimensions.Y * Mip0IndirectionDimensions.Z)),
|
||||
EmbreeScene.NumIndices / 3,
|
||||
*MeshName);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void FMeshUtilities2::GenerateSignedDistanceFieldVolumeData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
float DistanceFieldResolutionScale,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FDistanceFieldVolumeData& OutData)
|
||||
{
|
||||
if (DistanceFieldResolutionScale > 0)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Warning, TEXT("Couldn't generate distance field for mesh, platform is missing Embree support."));
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PLATFORM_ENABLE_VECTORINTRINSICS
|
@@ -0,0 +1,318 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#include "MeshRepresentationCommon.h"
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
#include "MeshUtilitiesPrivate.h"
|
||||
#include "DerivedMeshDataTaskUtils.h"
|
||||
|
||||
void MeshUtilities::GenerateStratifiedUniformHemisphereSamples(int32 NumSamples, FRandomStream& RandomStream, TArray<FVector4>& Samples)
|
||||
{
|
||||
const int32 NumThetaSteps = FMath::TruncToInt(FMath::Sqrt(NumSamples / (2.0f * (float)PI)));
|
||||
const int32 NumPhiSteps = FMath::TruncToInt(NumThetaSteps * (float)PI);
|
||||
|
||||
Samples.Empty(NumThetaSteps * NumPhiSteps);
|
||||
for (int32 ThetaIndex = 0; ThetaIndex < NumThetaSteps; ThetaIndex++)
|
||||
{
|
||||
for (int32 PhiIndex = 0; PhiIndex < NumPhiSteps; PhiIndex++)
|
||||
{
|
||||
const float U1 = RandomStream.GetFraction();
|
||||
const float U2 = RandomStream.GetFraction();
|
||||
|
||||
const float Fraction1 = (ThetaIndex + U1) / (float)NumThetaSteps;
|
||||
const float Fraction2 = (PhiIndex + U2) / (float)NumPhiSteps;
|
||||
|
||||
const float R = FMath::Sqrt(1.0f - Fraction1 * Fraction1);
|
||||
|
||||
const float Phi = 2.0f * (float)PI * Fraction2;
|
||||
// Convert to Cartesian
|
||||
Samples.Add(FVector4(FMath::Cos(Phi) * R, FMath::Sin(Phi) * R, Fraction1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// [Frisvad 2012, "Building an Orthonormal Basis from a 3D Unit Vector Without Normalization"]
|
||||
FMatrix MeshRepresentation::GetTangentBasisFrisvad(FVector TangentZ)
|
||||
{
|
||||
FVector TangentX;
|
||||
FVector TangentY;
|
||||
|
||||
if (TangentZ.Z < -0.9999999f)
|
||||
{
|
||||
TangentX = FVector(0, -1, 0);
|
||||
TangentY = FVector(-1, 0, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
float A = 1.0f / (1.0f + TangentZ.Z);
|
||||
float B = -TangentZ.X * TangentZ.Y * A;
|
||||
TangentX = FVector(1.0f - TangentZ.X * TangentZ.X * A, B, -TangentZ.X);
|
||||
TangentY = FVector(B, 1.0f - TangentZ.Y * TangentZ.Y * A, -TangentZ.Y);
|
||||
}
|
||||
|
||||
FMatrix LocalBasis;
|
||||
LocalBasis.SetIdentity();
|
||||
LocalBasis.SetAxis(0, TangentX);
|
||||
LocalBasis.SetAxis(1, TangentY);
|
||||
LocalBasis.SetAxis(2, TangentZ);
|
||||
return LocalBasis;
|
||||
}
|
||||
|
||||
#if USE_EMBREE
|
||||
void EmbreeFilterFunc(const struct RTCFilterFunctionNArguments* args)
|
||||
{
|
||||
FEmbreeGeometry* EmbreeGeometry = (FEmbreeGeometry*)args->geometryUserPtr;
|
||||
FEmbreeTriangleDesc Desc = EmbreeGeometry->TriangleDescs[RTCHitN_primID(args->hit, 1, 0)];
|
||||
|
||||
FEmbreeIntersectionContext& IntersectionContext = *static_cast<FEmbreeIntersectionContext*>(args->context);
|
||||
IntersectionContext.ElementIndex = Desc.ElementIndex;
|
||||
}
|
||||
|
||||
void EmbreeErrorFunc(void* userPtr, RTCError code, const char* str)
|
||||
{
|
||||
FString ErrorString;
|
||||
TArray<TCHAR>& ErrorStringArray = ErrorString.GetCharArray();
|
||||
ErrorStringArray.Empty();
|
||||
|
||||
int32 StrLen = FCStringAnsi::Strlen(str);
|
||||
int32 Length = FUTF8ToTCHAR_Convert::ConvertedLength(str, StrLen);
|
||||
ErrorStringArray.AddUninitialized(Length + 1); // +1 for the null terminator
|
||||
FUTF8ToTCHAR_Convert::Convert(ErrorStringArray.GetData(), ErrorStringArray.Num(), reinterpret_cast<const ANSICHAR*>(str), StrLen);
|
||||
ErrorStringArray[Length] = TEXT('\0');
|
||||
|
||||
UE_LOG(LogMeshUtilities, Error, TEXT("Embree error: %s Code=%u"), *ErrorString, (uint32)code);
|
||||
}
|
||||
#endif
|
||||
|
||||
void MeshRepresentation::SetupEmbreeScene(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FEmbreeScene& EmbreeScene)
|
||||
{
|
||||
const uint32 NumIndices = SourceMeshData.IsValid() ? SourceMeshData.GetNumIndices() : LODModel.IndexBuffer.GetNumIndices();
|
||||
const int32 NumTriangles = NumIndices / 3;
|
||||
const uint32 NumVertices = SourceMeshData.IsValid() ? SourceMeshData.GetNumVertices() : LODModel.VertexBuffers.PositionVertexBuffer.GetNumVertices();
|
||||
EmbreeScene.NumIndices = NumTriangles;
|
||||
|
||||
TArray<FkDOPBuildCollisionTriangle<uint32> > BuildTriangles;
|
||||
|
||||
#if USE_EMBREE
|
||||
EmbreeScene.bUseEmbree = true;
|
||||
|
||||
if (EmbreeScene.bUseEmbree)
|
||||
{
|
||||
EmbreeScene.EmbreeDevice = rtcNewDevice(nullptr);
|
||||
rtcSetDeviceErrorFunction(EmbreeScene.EmbreeDevice, EmbreeErrorFunc, nullptr);
|
||||
|
||||
RTCError ReturnErrorNewDevice = rtcGetDeviceError(EmbreeScene.EmbreeDevice);
|
||||
if (ReturnErrorNewDevice != RTC_ERROR_NONE)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Warning, TEXT("GenerateSignedDistanceFieldVolumeData failed for %s. Embree rtcNewDevice failed. Code: %d"), *MeshName, (int32)ReturnErrorNewDevice);
|
||||
return;
|
||||
}
|
||||
|
||||
EmbreeScene.EmbreeScene = rtcNewScene(EmbreeScene.EmbreeDevice);
|
||||
rtcSetSceneFlags(EmbreeScene.EmbreeScene, RTC_SCENE_FLAG_NONE);
|
||||
|
||||
RTCError ReturnErrorNewScene = rtcGetDeviceError(EmbreeScene.EmbreeDevice);
|
||||
if (ReturnErrorNewScene != RTC_ERROR_NONE)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Warning, TEXT("GenerateSignedDistanceFieldVolumeData failed for %s. Embree rtcNewScene failed. Code: %d"), *MeshName, (int32)ReturnErrorNewScene);
|
||||
rtcReleaseDevice(EmbreeScene.EmbreeDevice);
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
TArray<int32> FilteredTriangles;
|
||||
FilteredTriangles.Empty(NumTriangles);
|
||||
|
||||
if (SourceMeshData.IsValid())
|
||||
{
|
||||
for (int32 TriangleIndex = 0; TriangleIndex < NumTriangles; ++TriangleIndex)
|
||||
{
|
||||
const uint32 I0 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 0];
|
||||
const uint32 I1 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 1];
|
||||
const uint32 I2 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 2];
|
||||
|
||||
const FVector V0 = SourceMeshData.VertexPositions[I0];
|
||||
const FVector V1 = SourceMeshData.VertexPositions[I1];
|
||||
const FVector V2 = SourceMeshData.VertexPositions[I2];
|
||||
|
||||
const FVector TriangleNormal = ((V1 - V2) ^ (V0 - V2));
|
||||
const bool bDegenerateTriangle = TriangleNormal.SizeSquared() < SMALL_NUMBER;
|
||||
if (!bDegenerateTriangle)
|
||||
{
|
||||
FilteredTriangles.Add(TriangleIndex);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int32 TriangleIndex = 0; TriangleIndex < NumTriangles; ++TriangleIndex)
|
||||
{
|
||||
const FIndexArrayView Indices = LODModel.IndexBuffer.GetArrayView();
|
||||
const uint32 I0 = Indices[TriangleIndex * 3 + 0];
|
||||
const uint32 I1 = Indices[TriangleIndex * 3 + 1];
|
||||
const uint32 I2 = Indices[TriangleIndex * 3 + 2];
|
||||
|
||||
const FVector V0 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I0);
|
||||
const FVector V1 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I1);
|
||||
const FVector V2 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I2);
|
||||
|
||||
const FVector TriangleNormal = ((V1 - V2) ^ (V0 - V2));
|
||||
const bool bDegenerateTriangle = TriangleNormal.SizeSquared() < SMALL_NUMBER;
|
||||
if (!bDegenerateTriangle)
|
||||
{
|
||||
bool bTriangleIsOpaqueOrMasked = false;
|
||||
|
||||
for (int32 SectionIndex = 0; SectionIndex < LODModel.Sections.Num(); SectionIndex++)
|
||||
{
|
||||
const FStaticMeshSection& Section = LODModel.Sections[SectionIndex];
|
||||
|
||||
if ((uint32)(TriangleIndex * 3) >= Section.FirstIndex && (uint32)(TriangleIndex * 3) < Section.FirstIndex + Section.NumTriangles * 3)
|
||||
{
|
||||
if (MaterialBlendModes.IsValidIndex(Section.MaterialIndex))
|
||||
{
|
||||
bTriangleIsOpaqueOrMasked = !IsTranslucentBlendMode(MaterialBlendModes[Section.MaterialIndex].BlendMode);
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (bTriangleIsOpaqueOrMasked)
|
||||
{
|
||||
FilteredTriangles.Add(TriangleIndex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
EmbreeScene.Geometry.VertexArray.Empty(NumVertices);
|
||||
EmbreeScene.Geometry.VertexArray.AddUninitialized(NumVertices);
|
||||
|
||||
const int32 NumFilteredIndices = FilteredTriangles.Num() * 3;
|
||||
|
||||
EmbreeScene.Geometry.IndexArray.Empty(NumFilteredIndices);
|
||||
EmbreeScene.Geometry.IndexArray.AddUninitialized(NumFilteredIndices);
|
||||
|
||||
FVector* EmbreeVertices = EmbreeScene.Geometry.VertexArray.GetData();
|
||||
uint32* EmbreeIndices = EmbreeScene.Geometry.IndexArray.GetData();
|
||||
EmbreeScene.Geometry.TriangleDescs.Empty(FilteredTriangles.Num());
|
||||
|
||||
for (int32 FilteredTriangleIndex = 0; FilteredTriangleIndex < FilteredTriangles.Num(); FilteredTriangleIndex++)
|
||||
{
|
||||
uint32 I0, I1, I2;
|
||||
FVector V0, V1, V2;
|
||||
|
||||
const int32 TriangleIndex = FilteredTriangles[FilteredTriangleIndex];
|
||||
if (SourceMeshData.IsValid())
|
||||
{
|
||||
I0 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 0];
|
||||
I1 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 1];
|
||||
I2 = SourceMeshData.TriangleIndices[TriangleIndex * 3 + 2];
|
||||
|
||||
V0 = SourceMeshData.VertexPositions[I0];
|
||||
V1 = SourceMeshData.VertexPositions[I1];
|
||||
V2 = SourceMeshData.VertexPositions[I2];
|
||||
}
|
||||
else
|
||||
{
|
||||
const FIndexArrayView Indices = LODModel.IndexBuffer.GetArrayView();
|
||||
I0 = Indices[TriangleIndex * 3 + 0];
|
||||
I1 = Indices[TriangleIndex * 3 + 1];
|
||||
I2 = Indices[TriangleIndex * 3 + 2];
|
||||
|
||||
V0 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I0);
|
||||
V1 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I1);
|
||||
V2 = LODModel.VertexBuffers.PositionVertexBuffer.VertexPosition(I2);
|
||||
}
|
||||
|
||||
bool bTriangleIsTwoSided = false;
|
||||
|
||||
for (int32 SectionIndex = 0; SectionIndex < LODModel.Sections.Num(); SectionIndex++)
|
||||
{
|
||||
const FStaticMeshSection& Section = LODModel.Sections[SectionIndex];
|
||||
|
||||
if ((uint32)(TriangleIndex * 3) >= Section.FirstIndex && (uint32)(TriangleIndex * 3) < Section.FirstIndex + Section.NumTriangles * 3)
|
||||
{
|
||||
if (MaterialBlendModes.IsValidIndex(Section.MaterialIndex))
|
||||
{
|
||||
bTriangleIsTwoSided = MaterialBlendModes[Section.MaterialIndex].bTwoSided;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (EmbreeScene.bUseEmbree)
|
||||
{
|
||||
EmbreeIndices[FilteredTriangleIndex * 3 + 0] = I0;
|
||||
EmbreeIndices[FilteredTriangleIndex * 3 + 1] = I1;
|
||||
EmbreeIndices[FilteredTriangleIndex * 3 + 2] = I2;
|
||||
|
||||
EmbreeVertices[I0] = V0;
|
||||
EmbreeVertices[I1] = V1;
|
||||
EmbreeVertices[I2] = V2;
|
||||
|
||||
FEmbreeTriangleDesc Desc;
|
||||
// Store bGenerateAsIfTwoSided in material index
|
||||
Desc.ElementIndex = bGenerateAsIfTwoSided || bTriangleIsTwoSided ? 1 : 0;
|
||||
EmbreeScene.Geometry.TriangleDescs.Add(Desc);
|
||||
}
|
||||
else
|
||||
{
|
||||
BuildTriangles.Add(FkDOPBuildCollisionTriangle<uint32>(
|
||||
// Store bGenerateAsIfTwoSided in material index
|
||||
bGenerateAsIfTwoSided || bTriangleIsTwoSided ? 1 : 0,
|
||||
V0,
|
||||
V1,
|
||||
V2));
|
||||
}
|
||||
}
|
||||
|
||||
#if USE_EMBREE
|
||||
if (EmbreeScene.bUseEmbree)
|
||||
{
|
||||
RTCGeometry Geometry = rtcNewGeometry(EmbreeScene.EmbreeDevice, RTC_GEOMETRY_TYPE_TRIANGLE);
|
||||
EmbreeScene.Geometry.InternalGeometry = Geometry;
|
||||
|
||||
rtcSetSharedGeometryBuffer(Geometry, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, EmbreeVertices, 0, sizeof(FVector), NumVertices);
|
||||
rtcSetSharedGeometryBuffer(Geometry, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, EmbreeIndices, 0, sizeof(uint32) * 3, FilteredTriangles.Num());
|
||||
|
||||
rtcSetGeometryUserData(Geometry, &EmbreeScene.Geometry);
|
||||
rtcSetGeometryIntersectFilterFunction(Geometry, EmbreeFilterFunc);
|
||||
|
||||
rtcCommitGeometry(Geometry);
|
||||
rtcAttachGeometry(EmbreeScene.EmbreeScene, Geometry);
|
||||
rtcReleaseGeometry(Geometry);
|
||||
|
||||
rtcCommitScene(EmbreeScene.EmbreeScene);
|
||||
|
||||
RTCError ReturnError = rtcGetDeviceError(EmbreeScene.EmbreeDevice);
|
||||
if (ReturnError != RTC_ERROR_NONE)
|
||||
{
|
||||
UE_LOG(LogMeshUtilities, Warning, TEXT("GenerateSignedDistanceFieldVolumeData failed for %s. Embree rtcCommitScene failed. Code: %d"), *MeshName, (int32)ReturnError);
|
||||
return;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
EmbreeScene.kDopTree.Build(BuildTriangles);
|
||||
}
|
||||
}
|
||||
|
||||
void MeshRepresentation::DeleteEmbreeScene(FEmbreeScene& EmbreeScene)
|
||||
{
|
||||
#if USE_EMBREE
|
||||
if (EmbreeScene.bUseEmbree)
|
||||
{
|
||||
rtcReleaseScene(EmbreeScene.EmbreeScene);
|
||||
rtcReleaseDevice(EmbreeScene.EmbreeDevice);
|
||||
}
|
||||
#endif
|
||||
}
|
@@ -0,0 +1,158 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
#include "kDOP.h"
|
||||
#include "MeshUtilities2/Public/DistanceFieldAtlas2.h"
|
||||
|
||||
#if USE_EMBREE
|
||||
#include <embree3/rtcore.h>
|
||||
#include <embree3/rtcore_ray.h>
|
||||
#else
|
||||
typedef void* RTCDevice;
|
||||
typedef void* RTCScene;
|
||||
typedef void* RTCGeometry;
|
||||
#endif
|
||||
|
||||
class FSourceMeshDataForDerivedDataTask;
|
||||
|
||||
class FMeshBuildDataProvider
|
||||
{
|
||||
public:
|
||||
|
||||
/** Initialization constructor. */
|
||||
FMeshBuildDataProvider(
|
||||
const TkDOPTree<const FMeshBuildDataProvider, uint32>& InkDopTree) :
|
||||
kDopTree(InkDopTree)
|
||||
{}
|
||||
|
||||
// kDOP data provider interface.
|
||||
|
||||
FORCEINLINE const TkDOPTree<const FMeshBuildDataProvider, uint32>& GetkDOPTree(void) const
|
||||
{
|
||||
return kDopTree;
|
||||
}
|
||||
|
||||
FORCEINLINE const FMatrix& GetLocalToWorld(void) const
|
||||
{
|
||||
return FMatrix::Identity;
|
||||
}
|
||||
|
||||
FORCEINLINE const FMatrix& GetWorldToLocal(void) const
|
||||
{
|
||||
return FMatrix::Identity;
|
||||
}
|
||||
|
||||
FORCEINLINE FMatrix GetLocalToWorldTransposeAdjoint(void) const
|
||||
{
|
||||
return FMatrix::Identity;
|
||||
}
|
||||
|
||||
FORCEINLINE float GetDeterminant(void) const
|
||||
{
|
||||
return 1.0f;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
const TkDOPTree<const FMeshBuildDataProvider, uint32>& kDopTree;
|
||||
};
|
||||
|
||||
struct FEmbreeTriangleDesc
|
||||
{
|
||||
int16 ElementIndex;
|
||||
};
|
||||
|
||||
// Mapping between Embree Geometry Id and engine Mesh/LOD Id
|
||||
struct FEmbreeGeometry
|
||||
{
|
||||
TArray<uint32> IndexArray;
|
||||
TArray<FVector> VertexArray;
|
||||
TArray<FEmbreeTriangleDesc> TriangleDescs; // The material ID of each triangle.
|
||||
RTCGeometry InternalGeometry;
|
||||
};
|
||||
|
||||
class FEmbreeScene
|
||||
{
|
||||
public:
|
||||
bool bUseEmbree = false;
|
||||
int32 NumIndices = 0;
|
||||
|
||||
// Embree
|
||||
RTCDevice EmbreeDevice = nullptr;
|
||||
RTCScene EmbreeScene = nullptr;
|
||||
FEmbreeGeometry Geometry;
|
||||
|
||||
// DOP tree fallback
|
||||
TkDOPTree<const FMeshBuildDataProvider, uint32> kDopTree;
|
||||
};
|
||||
|
||||
#if USE_EMBREE
|
||||
struct FEmbreeRay : public RTCRayHit
|
||||
{
|
||||
FEmbreeRay() :
|
||||
ElementIndex(-1)
|
||||
{
|
||||
hit.u = hit.v = 0;
|
||||
ray.time = 0;
|
||||
ray.mask = 0xFFFFFFFF;
|
||||
hit.geomID = RTC_INVALID_GEOMETRY_ID;
|
||||
hit.instID[0] = RTC_INVALID_GEOMETRY_ID;
|
||||
hit.primID = RTC_INVALID_GEOMETRY_ID;
|
||||
}
|
||||
|
||||
FVector GetHitNormal() const
|
||||
{
|
||||
return FVector(-hit.Ng_x, -hit.Ng_y, -hit.Ng_z).GetSafeNormal();
|
||||
}
|
||||
|
||||
bool IsHitTwoSided() const
|
||||
{
|
||||
// MaterialIndex on the build triangles was set to 1 if two-sided, or 0 if one-sided
|
||||
return ElementIndex == 1;
|
||||
}
|
||||
|
||||
// Additional Outputs.
|
||||
int32 ElementIndex; // Material Index
|
||||
};
|
||||
|
||||
struct FEmbreeIntersectionContext : public RTCIntersectContext
|
||||
{
|
||||
FEmbreeIntersectionContext() :
|
||||
ElementIndex(-1)
|
||||
{}
|
||||
|
||||
bool IsHitTwoSided() const
|
||||
{
|
||||
// MaterialIndex on the build triangles was set to 1 if two-sided, or 0 if one-sided
|
||||
return ElementIndex == 1;
|
||||
}
|
||||
|
||||
// Additional Outputs.
|
||||
int32 ElementIndex; // Material Index
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
namespace MeshRepresentation
|
||||
{
|
||||
/**
|
||||
* Generates unit length, stratified and uniformly distributed direction samples in a hemisphere.
|
||||
*/
|
||||
void GenerateStratifiedUniformHemisphereSamples(int32 NumSamples, FRandomStream& RandomStream, TArray<FVector4>& Samples);
|
||||
|
||||
/**
|
||||
* [Frisvad 2012, "Building an Orthonormal Basis from a 3D Unit Vector Without Normalization"]
|
||||
*/
|
||||
FMatrix GetTangentBasisFrisvad(FVector TangentZ);
|
||||
|
||||
void SetupEmbreeScene(FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FEmbreeScene& EmbreeScene);
|
||||
|
||||
void DeleteEmbreeScene(FEmbreeScene& EmbreeScene);
|
||||
};
|
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,259 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#pragma once
|
||||
|
||||
//#include "MeshUtilities.h"
|
||||
// #include "IAnimationBlueprintEditor.h"
|
||||
// #include "IAnimationBlueprintEditorModule.h"
|
||||
// #include "IAnimationEditor.h"
|
||||
// #include "IAnimationEditorModule.h"
|
||||
// #include "ISkeletalMeshEditor.h"
|
||||
// #include "ISkeletalMeshEditorModule.h"
|
||||
// #include "ISkeletonEditor.h"
|
||||
// #include "ISkeletonEditorModule.h"
|
||||
#include "Engine/StaticMesh.h"
|
||||
#include "MeshUtilities2/Public/DistanceFieldAtlas2.h"
|
||||
#include "MeshUtilities2/Public/MeshUtilities2.h"
|
||||
|
||||
class FProcessAsyncTasksTickObject : FTickableGameObject
|
||||
{
|
||||
public:
|
||||
virtual bool IsTickableInEditor() const override { return true; }
|
||||
virtual void Tick(float DeltaTime) override;
|
||||
virtual TStatId GetStatId() const { return TStatId(); }
|
||||
};
|
||||
|
||||
|
||||
class FMeshUtilities2 : public IMeshUtilities2
|
||||
{
|
||||
public:
|
||||
// UE_DEPRECATED(4.17, "Use functionality in new MeshReduction Module")
|
||||
// virtual IMeshReduction* GetStaticMeshReductionInterface() override;
|
||||
//
|
||||
// UE_DEPRECATED(4.17, "Use functionality in new MeshReduction Module")
|
||||
// virtual IMeshReduction* GetSkeletalMeshReductionInterface() override;
|
||||
//
|
||||
// UE_DEPRECATED(4.17, "Use functionality in new MeshReduction Module")
|
||||
// virtual IMeshMerging* GetMeshMergingInterface() override;
|
||||
|
||||
//UE_DEPRECATED(4.17, "Use functionality in new MeshMergeUtilities Module")
|
||||
//virtual void MergeActors(
|
||||
// const TArray<AActor*>& SourceActors,
|
||||
// const FMeshMergingSettings& InSettings,
|
||||
// UPackage* InOuter,
|
||||
// const FString& InBasePackageName,
|
||||
// TArray<UObject*>& OutAssetsToSync,
|
||||
// FVector& OutMergedActorLocation,
|
||||
// bool bSilent = false) const override;
|
||||
|
||||
//UE_DEPRECATED(4.17, "Use functionality in new MeshMergeUtilities Module")
|
||||
//virtual void MergeStaticMeshComponents(
|
||||
// const TArray<UStaticMeshComponent*>& ComponentsToMerge,
|
||||
// UWorld* World,
|
||||
// const FMeshMergingSettings& InSettings,
|
||||
// UPackage* InOuter,
|
||||
// const FString& InBasePackageName,
|
||||
// TArray<UObject*>& OutAssetsToSync,
|
||||
// FVector& OutMergedActorLocation,
|
||||
// const float ScreenSize,
|
||||
// bool bSilent = false) const override;
|
||||
|
||||
//UE_DEPRECATED(4.17, "Use functionality in new MeshMergeUtilities Module")
|
||||
//virtual void CreateProxyMesh(const TArray<AActor*>& InActors, const struct FMeshProxySettings& InMeshProxySettings, UPackage* InOuter, const FString& InProxyBasePackageName, const FGuid InGuid, FCreateProxyDelegate InProxyCreatedDelegate, const bool bAllowAsync,
|
||||
//const float ScreenAreaSize = 1.0f) override;
|
||||
|
||||
//UE_DEPRECATED(4.17, "Function is removed, use functionality in new MeshMergeUtilities Module")
|
||||
//virtual void FlattenMaterialsWithMeshData(TArray<UMaterialInterface*>& InMaterials, TArray<FRawMeshExt>& InSourceMeshes, TMap<FMeshIdAndLOD, TArray<int32>>& InMaterialIndexMap, TArray<bool>& InMeshShouldBakeVertexData, const FMaterialProxySettings &InMaterialProxySettings, TArray<FFlattenMaterial> &OutFlattenedMaterials) const override;
|
||||
|
||||
private:
|
||||
FProcessAsyncTasksTickObject* TickObject;
|
||||
|
||||
/** Cached version string. */
|
||||
FString VersionString;
|
||||
/** True if NvTriStrip is being used for tri order optimization. */
|
||||
bool bUsingNvTriStrip;
|
||||
/** True if we disable triangle order optimization. For debugging purposes only */
|
||||
bool bDisableTriangleOrderOptimization;
|
||||
|
||||
// IMeshUtilities interface.
|
||||
virtual const FString& GetVersionString() const override
|
||||
{
|
||||
return VersionString;
|
||||
}
|
||||
|
||||
virtual void FixupMaterialSlotNames(UStaticMesh* StaticMesh) const override;
|
||||
|
||||
virtual void FixupMaterialSlotNames(USkeletalMesh* SkeletalMesh) const override;
|
||||
|
||||
//virtual bool BuildStaticMesh(
|
||||
// FStaticMeshRenderData& OutRenderData,
|
||||
// UStaticMesh* StaticMesh,
|
||||
// const FStaticMeshLODGroup& LODGroup
|
||||
// ) override;
|
||||
|
||||
virtual void BuildStaticMeshVertexAndIndexBuffers(
|
||||
TArray<FStaticMeshBuildVertex>& OutVertices,
|
||||
TArray<TArray<uint32>>& OutPerSectionIndices,
|
||||
TArray<int32>& OutWedgeMap,
|
||||
const FRawMesh& RawMesh,
|
||||
const FOverlappingCorners& OverlappingCorners,
|
||||
const TMap<uint32, uint32>& MaterialToSectionMapping,
|
||||
float ComparisonThreshold,
|
||||
FVector BuildScale,
|
||||
int32 ImportVersion
|
||||
) override;
|
||||
|
||||
//virtual bool GenerateStaticMeshLODs(UStaticMesh* StaticMesh, const FStaticMeshLODGroup& LODGroup) override;
|
||||
|
||||
virtual void GenerateSignedDistanceFieldVolumeData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
float DistanceFieldResolutionScale,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
FDistanceFieldVolumeData& OutData) override;
|
||||
|
||||
virtual bool GenerateCardRepresentationData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
const FDistanceFieldVolumeData* DistanceFieldVolumeData,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
class FCardRepresentationData& OutData) override;
|
||||
|
||||
virtual void RecomputeTangentsAndNormalsForRawMesh(bool bRecomputeTangents, bool bRecomputeNormals, const FMeshBuildSettings& InBuildSettings, FRawMesh& OutRawMesh) const override;
|
||||
virtual void RecomputeTangentsAndNormalsForRawMesh(bool bRecomputeTangents, bool bRecomputeNormals, const FMeshBuildSettings& InBuildSettings, const FOverlappingCorners& InOverlappingCorners, FRawMesh& OutRawMesh) const override;
|
||||
|
||||
//virtual bool GenerateUniqueUVsForStaticMesh(const FRawMesh& RawMesh, int32 TextureResolution, TArray<FVector2D>& OutTexCoords) const override;
|
||||
//virtual bool GenerateUniqueUVsForStaticMesh(const FRawMesh& RawMesh, int32 TextureResolution, bool bMergeIdenticalMaterials, TArray<FVector2D>& OutTexCoords) const override;
|
||||
|
||||
//virtual bool BuildSkeletalMesh(FSkeletalMeshLODModel& LODModel, const FString& SkeletalMeshName, const FReferenceSkeleton& RefSkeleton, const TArray<SkeletalMeshImportData::FVertInfluence>& Influences, const TArray<SkeletalMeshImportData::FMeshWedge>& Wedges, const TArray<SkeletalMeshImportData::FMeshFace>& Faces, const TArray<FVector>& Points, const TArray<int32>& PointToOriginalMap, const MeshBuildOptions& BuildOptions = MeshBuildOptions(), TArray<FText> * OutWarningMessages = NULL, TArray<FName> * OutWarningNames = NULL) override;
|
||||
|
||||
//UE_DEPRECATED(4.24, "Use functionality in FSkeletalMeshUtilityBuilder instead.")
|
||||
//bool BuildSkeletalMesh_Legacy(FSkeletalMeshLODModel& LODModel, const FReferenceSkeleton& RefSkeleton, const TArray<SkeletalMeshImportData::FVertInfluence>& Influences, const TArray<SkeletalMeshImportData::FMeshWedge>& Wedges, const TArray<SkeletalMeshImportData::FMeshFace>& Faces, const TArray<FVector>& Points, const TArray<int32>& PointToOriginalMap, const FOverlappingThresholds& OverlappingThresholds, bool bComputeNormals = true, bool bComputeTangents = true, bool bComputeWeightedNormals = true, TArray<FText> * OutWarningMessages = NULL, TArray<FName> * OutWarningNames = NULL);
|
||||
|
||||
virtual void CacheOptimizeIndexBuffer(TArray<uint16>& Indices) override;
|
||||
virtual void CacheOptimizeIndexBuffer(TArray<uint32>& Indices) override;
|
||||
void CacheOptimizeVertexAndIndexBuffer(TArray<FStaticMeshBuildVertex>& Vertices, TArray<TArray<uint32>>& PerSectionIndices, TArray<int32>& WedgeMap);
|
||||
|
||||
virtual void BuildSkeletalAdjacencyIndexBuffer(
|
||||
const TArray<FSoftSkinVertex>& VertexBuffer,
|
||||
const uint32 TexCoordCount,
|
||||
const TArray<uint32>& Indices,
|
||||
TArray<uint32>& OutPnAenIndices
|
||||
) override;
|
||||
|
||||
/**
|
||||
* Calculate The tangent bi normal and normal for the triangle define by the tree SoftSkinVertex.
|
||||
*
|
||||
* @note The function will always fill properly the OutTangents array with 3 FVector. If the triangle is degenerated the OutTangent will contain zeroed vectors.
|
||||
*
|
||||
* @param VertexA - First triangle vertex.
|
||||
* @param VertexB - Second triangle vertex.
|
||||
* @param VertexC - Third triangle vertex.
|
||||
* @param OutTangents - The function allocate the TArray with 3 FVector, to represent the triangle tangent, bi normal and normal.
|
||||
* @param CompareThreshold - The threshold use to compare a tangent vector with zero.
|
||||
*/
|
||||
virtual void CalculateTriangleTangent(const FSoftSkinVertex& VertexA, const FSoftSkinVertex& VertexB, const FSoftSkinVertex& VertexC, TArray<FVector>& OutTangents, float CompareThreshold) override;
|
||||
|
||||
virtual void CalcBoneVertInfos(USkeletalMesh* SkeletalMesh, TArray<FBoneVertInfo2>& Infos, bool bOnlyDominant) override;
|
||||
|
||||
/**
|
||||
* Convert a set of mesh components in their current pose to a static mesh.
|
||||
* @param InMeshComponents The mesh components we want to convert
|
||||
* @param InRootTransform The transform of the root of the mesh we want to output
|
||||
* @param InPackageName The package name to create the static mesh in. If this is empty then a dialog will be displayed to pick the mesh.
|
||||
* @return a new static mesh (specified by the user)
|
||||
*/
|
||||
virtual UStaticMesh* ConvertMeshesToStaticMesh(const TArray<UMeshComponent*>& InMeshComponents, const FTransform& InRootTransform = FTransform::Identity, const FString& InPackageName = FString()) override;
|
||||
|
||||
/**
|
||||
* Builds a renderable skeletal mesh LOD model. Note that the array of chunks
|
||||
* will be destroyed during this process!
|
||||
* @param LODModel Upon return contains a renderable skeletal mesh LOD model.
|
||||
* @param RefSkeleton The reference skeleton associated with the model.
|
||||
* @param Chunks Skinned mesh chunks from which to build the renderable model.
|
||||
* @param PointToOriginalMap Maps a vertex's RawPointIdx to its index at import time.
|
||||
*/
|
||||
//void BuildSkeletalModelFromChunks(FSkeletalMeshLODModel& LODModel, const FReferenceSkeleton& RefSkeleton, TArray<FSkinnedMeshChunk*>& Chunks, const TArray<int32>& PointToOriginalMap);
|
||||
|
||||
virtual void FindOverlappingCorners(FOverlappingCorners& OutOverlappingCorners, const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, float ComparisonThreshold) const override;
|
||||
|
||||
void FindOverlappingCorners(FOverlappingCorners& OutOverlappingCorners, FRawMesh const& RawMesh, float ComparisonThreshold) const;
|
||||
// IModuleInterface interface.
|
||||
virtual void StartupModule() override;
|
||||
virtual void ShutdownModule() override;
|
||||
|
||||
virtual void ExtractMeshDataForGeometryCache(FRawMesh& RawMesh, const FMeshBuildSettings& BuildSettings, TArray<FStaticMeshBuildVertex>& OutVertices, TArray<TArray<uint32>>& OutPerSectionIndices, int32 ImportVersion);
|
||||
|
||||
//virtual void CalculateTextureCoordinateBoundsForSkeletalMesh(const FSkeletalMeshLODModel& LODModel, TArray<FBox2D>& OutBounds) const override;
|
||||
|
||||
//virtual bool GenerateUniqueUVsForSkeletalMesh(const FSkeletalMeshLODModel& LODModel, int32 TextureResolution, TArray<FVector2D>& OutTexCoords) const override;
|
||||
|
||||
virtual bool RemoveBonesFromMesh(USkeletalMesh* SkeletalMesh, int32 LODIndex, const TArray<FName>* BoneNamesToRemove) const override;
|
||||
|
||||
virtual void CalculateTangents(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<uint32>& InSmoothingGroupIndices, const uint32 InTangentOptions, TArray<FVector>& OutTangentX,
|
||||
TArray<FVector>& OutTangentY, TArray<FVector>& OutNormals) const override;
|
||||
virtual void CalculateMikkTSpaceTangents(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<FVector>& InNormals, bool bIgnoreDegenerateTriangles, TArray<FVector>& OutTangentX,
|
||||
TArray<FVector>& OutTangentY) const override;
|
||||
//virtual void CalculateNormals(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<uint32>& InSmoothingGroupIndices, const uint32 InTangentOptions, TArray<FVector>& OutNormals) const override;
|
||||
virtual void CalculateOverlappingCorners(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, bool bIgnoreDegenerateTriangles, FOverlappingCorners& OutOverlappingCorners) const override;
|
||||
|
||||
//virtual void GenerateRuntimeSkinWeightData(const FSkeletalMeshLODModel* ImportedModel, const TArray<FRawSkinWeight>& InRawSkinWeights, FRuntimeSkinWeightProfileData& InOutSkinWeightOverrideData) const override;
|
||||
|
||||
void RegisterMenus();
|
||||
|
||||
// Need to call some members from this class, (which is internal to this module)
|
||||
friend class FStaticMeshUtilityBuilder;
|
||||
|
||||
protected:
|
||||
void AddAnimationBlueprintEditorToolbarExtender();
|
||||
|
||||
void RemoveAnimationBlueprintEditorToolbarExtender();
|
||||
|
||||
//TSharedRef<FExtender> GetAnimationBlueprintEditorToolbarExtender(const TSharedRef<FUICommandList> CommandList, TSharedRef<IAnimationBlueprintEditor> InAnimationBlueprintEditor);
|
||||
|
||||
void AddAnimationEditorToolbarExtender();
|
||||
|
||||
void RemoveAnimationEditorToolbarExtender();
|
||||
|
||||
//TSharedRef<FExtender> GetAnimationEditorToolbarExtender(const TSharedRef<FUICommandList> CommandList, TSharedRef<IAnimationEditor> InAnimationEditor);
|
||||
|
||||
//TSharedRef<FExtender> GetSkeletalMeshEditorToolbarExtender(const TSharedRef<FUICommandList> CommandList, TSharedRef<ISkeletalMeshEditor> InSkeletalMeshEditor);
|
||||
|
||||
void AddSkeletonEditorToolbarExtender();
|
||||
|
||||
void RemoveSkeletonEditorToolbarExtender();
|
||||
|
||||
//TSharedRef<FExtender> GetSkeletonEditorToolbarExtender(const TSharedRef<FUICommandList> CommandList, TSharedRef<ISkeletonEditor> InSkeletonEditor);
|
||||
|
||||
void HandleAddSkeletalMeshActionExtenderToToolbar(FToolBarBuilder& ParentToolbarBuilder, UMeshComponent* MeshComponent);
|
||||
|
||||
void AddLevelViewportMenuExtender();
|
||||
|
||||
void RemoveLevelViewportMenuExtender();
|
||||
|
||||
TSharedRef<FExtender> GetLevelViewportContextMenuExtender(const TSharedRef<FUICommandList> CommandList, const TArray<AActor*> InActors);
|
||||
|
||||
void ConvertActorMeshesToStaticMeshUIAction(const TArray<AActor*> InActors);
|
||||
|
||||
FDelegateHandle ModuleLoadedDelegateHandle;
|
||||
FDelegateHandle LevelViewportExtenderHandle;
|
||||
FDelegateHandle AnimationBlueprintEditorExtenderHandle;
|
||||
FDelegateHandle AnimationEditorExtenderHandle;
|
||||
FDelegateHandle SkeletonEditorExtenderHandle;
|
||||
};
|
||||
|
||||
DECLARE_LOG_CATEGORY_EXTERN(LogMeshUtilities, Verbose, All);
|
||||
|
||||
namespace MeshUtilities
|
||||
{
|
||||
/** Generates unit length, stratified and uniformly distributed direction samples in a hemisphere. */
|
||||
void GenerateStratifiedUniformHemisphereSamples(int32 NumSamples, FRandomStream& RandomStream, TArray<FVector4>& Samples);
|
||||
};
|
@@ -0,0 +1,211 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
/*=============================================================================
|
||||
DistanceFieldAtlas.h
|
||||
=============================================================================*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "CoreMinimal.h"
|
||||
#include "Containers/LockFreeList.h"
|
||||
#include "ProfilingDebugging/ResourceSize.h"
|
||||
#include "Engine/EngineTypes.h"
|
||||
#include "UObject/GCObject.h"
|
||||
#include "Templates/UniquePtr.h"
|
||||
#include "DerivedMeshDataTaskUtils.h"
|
||||
#include "Async/AsyncWork.h"
|
||||
|
||||
class MESHUTILITIES2_API FSignedDistanceFieldBuildMaterialData2
|
||||
{
|
||||
public:
|
||||
EBlendMode BlendMode;
|
||||
bool bTwoSided;
|
||||
};
|
||||
|
||||
class UStaticMesh;
|
||||
class UTexture2D;
|
||||
|
||||
template <class T>
|
||||
class TLockFreePointerListLIFO;
|
||||
|
||||
// Change DDC key when modifying these (or any DF encoding logic)
|
||||
namespace DistanceField2
|
||||
{
|
||||
// One voxel border around object for handling gradient
|
||||
constexpr int32 MeshDistanceFieldObjectBorder = 1;
|
||||
constexpr int32 UniqueDataBrickSize = 7;
|
||||
// Half voxel border around brick for trilinear filtering
|
||||
constexpr int32 BrickSize = 8;
|
||||
// Trade off between SDF memory and number of steps required to find intersection
|
||||
constexpr int32 BandSizeInVoxels = 4;
|
||||
constexpr int32 NumMips = 3;
|
||||
constexpr uint32 InvalidBrickIndex = 0xFFFFFFFF;
|
||||
constexpr EPixelFormat DistanceFieldFormat = PF_G8;
|
||||
|
||||
// Must match LoadDFAssetData
|
||||
constexpr uint32 MaxIndirectionDimension = 1024;
|
||||
};
|
||||
|
||||
class FSparseDistanceFieldMip2
|
||||
{
|
||||
public:
|
||||
FSparseDistanceFieldMip2() :
|
||||
IndirectionDimensions(FIntVector::ZeroValue),
|
||||
NumDistanceFieldBricks(0),
|
||||
VolumeToVirtualUVScale(FVector::ZeroVector),
|
||||
VolumeToVirtualUVAdd(FVector::ZeroVector),
|
||||
DistanceFieldToVolumeScaleBias(FVector2D::ZeroVector),
|
||||
BulkOffset(0),
|
||||
BulkSize(0)
|
||||
{
|
||||
}
|
||||
|
||||
FIntVector IndirectionDimensions;
|
||||
int32 NumDistanceFieldBricks;
|
||||
FVector VolumeToVirtualUVScale;
|
||||
FVector VolumeToVirtualUVAdd;
|
||||
FVector2D DistanceFieldToVolumeScaleBias;
|
||||
uint32 BulkOffset;
|
||||
uint32 BulkSize;
|
||||
|
||||
friend FArchive& operator<<(FArchive& Ar, FSparseDistanceFieldMip2& Mip)
|
||||
{
|
||||
Ar << Mip.IndirectionDimensions << Mip.NumDistanceFieldBricks << Mip.VolumeToVirtualUVScale << Mip.VolumeToVirtualUVAdd << Mip.DistanceFieldToVolumeScaleBias << Mip.BulkOffset << Mip.BulkSize;
|
||||
return Ar;
|
||||
}
|
||||
|
||||
SIZE_T GetResourceSizeBytes() const
|
||||
{
|
||||
FResourceSizeEx ResSize;
|
||||
GetResourceSizeEx(ResSize);
|
||||
return ResSize.GetTotalMemoryBytes();
|
||||
}
|
||||
|
||||
void GetResourceSizeEx(FResourceSizeEx& CumulativeResourceSize) const
|
||||
{
|
||||
CumulativeResourceSize.AddDedicatedSystemMemoryBytes(sizeof(*this));
|
||||
}
|
||||
};
|
||||
|
||||
class FAsyncDistanceFieldTask2;
|
||||
|
||||
class FAsyncDistanceFieldTaskWorker2 : public FNonAbandonableTask
|
||||
{
|
||||
public:
|
||||
FAsyncDistanceFieldTaskWorker2(FAsyncDistanceFieldTask2& InTask)
|
||||
: Task(InTask)
|
||||
{
|
||||
}
|
||||
|
||||
FORCEINLINE TStatId GetStatId() const
|
||||
{
|
||||
RETURN_QUICK_DECLARE_CYCLE_STAT(FAsyncDistanceFieldTaskWorker2, STATGROUP_ThreadPoolAsyncTasks);
|
||||
}
|
||||
|
||||
void DoWork();
|
||||
|
||||
private:
|
||||
FAsyncDistanceFieldTask2& Task;
|
||||
};
|
||||
|
||||
/** A task to build a distance field for a single mesh */
|
||||
class MESHUTILITIES2_API FAsyncDistanceFieldTask2
|
||||
{
|
||||
public:
|
||||
FAsyncDistanceFieldTask2();
|
||||
|
||||
// #if WITH_EDITOR
|
||||
TArray<FSignedDistanceFieldBuildMaterialData2> MaterialBlendModes;
|
||||
// #endif
|
||||
FSourceMeshDataForDerivedDataTask SourceMeshData;
|
||||
UStaticMesh* StaticMesh;
|
||||
UStaticMesh* GenerateSource;
|
||||
float DistanceFieldResolutionScale;
|
||||
bool bGenerateDistanceFieldAsIfTwoSided;
|
||||
const ITargetPlatform* TargetPlatform;
|
||||
FString DDCKey;
|
||||
FDistanceFieldVolumeData* GeneratedVolumeData;
|
||||
TUniquePtr<FAsyncTask<FAsyncDistanceFieldTaskWorker2>> AsyncTask = nullptr;
|
||||
};
|
||||
|
||||
/** Class that manages asynchronous building of mesh distance fields. */
|
||||
class MESHUTILITIES2_API FDistanceFieldAsyncQueue2 : public FGCObject
|
||||
{
|
||||
public:
|
||||
FDistanceFieldAsyncQueue2();
|
||||
|
||||
virtual ~FDistanceFieldAsyncQueue2();
|
||||
|
||||
/** Adds a new build task. (Thread-Safe) */
|
||||
void AddTask(FAsyncDistanceFieldTask2* Task);
|
||||
|
||||
/** Cancel the build on this specific static mesh or block until it is completed if already started. */
|
||||
void CancelBuild(UStaticMesh* StaticMesh);
|
||||
|
||||
/** Blocks the main thread until the async build are either cancelled or completed. */
|
||||
void CancelAllOutstandingBuilds();
|
||||
|
||||
/** Blocks the main thread until the async build of the specified mesh is complete. */
|
||||
void BlockUntilBuildComplete(UStaticMesh* StaticMesh, bool bWarnIfBlocked);
|
||||
|
||||
/** Blocks the main thread until all async builds complete. */
|
||||
void BlockUntilAllBuildsComplete();
|
||||
|
||||
/** Called once per frame, fetches completed tasks and applies them to the scene. */
|
||||
void ProcessAsyncTasks(bool bLimitExecutionTime = false);
|
||||
|
||||
/** Exposes UObject references used by the async build. */
|
||||
virtual void AddReferencedObjects(FReferenceCollector& Collector) override;
|
||||
|
||||
/** Returns name of class for reference tracking */
|
||||
virtual FString GetReferencerName() const override;
|
||||
|
||||
/** Blocks until it is safe to shut down (worker threads are idle). */
|
||||
void Shutdown();
|
||||
|
||||
int32 GetNumOutstandingTasks() const
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
return ReferencedTasks.Num();
|
||||
}
|
||||
|
||||
private:
|
||||
friend FAsyncDistanceFieldTaskWorker2;
|
||||
void ProcessPendingTasks();
|
||||
|
||||
TUniquePtr<FQueuedThreadPool> ThreadPool;
|
||||
|
||||
/** Builds a single task with the given threadpool. Called from the worker thread. */
|
||||
void Build(FAsyncDistanceFieldTask2* Task, class FQueuedThreadPool& ThreadPool);
|
||||
|
||||
/** Change the priority of the background task. */
|
||||
void RescheduleBackgroundTask(FAsyncDistanceFieldTask2* InTask, EQueuedWorkPriority InPriority);
|
||||
|
||||
/** Task will be sent to a background worker. */
|
||||
void StartBackgroundTask(FAsyncDistanceFieldTask2* Task);
|
||||
|
||||
/** Cancel or finish any background work for the given task. */
|
||||
void CancelBackgroundTask(TArray<FAsyncDistanceFieldTask2*> Tasks);
|
||||
|
||||
/** Game-thread managed list of tasks in the async system. */
|
||||
TArray<FAsyncDistanceFieldTask2*> ReferencedTasks;
|
||||
|
||||
/** Tasks that are waiting on static mesh compilation to proceed */
|
||||
TArray<FAsyncDistanceFieldTask2*> PendingTasks;
|
||||
|
||||
/** Tasks that have completed processing. */
|
||||
// consider changing this from FIFO to Unordered, which may be faster
|
||||
TLockFreePointerListLIFO<FAsyncDistanceFieldTask2> CompletedTasks;
|
||||
|
||||
class IMeshUtilities2* MeshUtilities;
|
||||
|
||||
mutable FCriticalSection CriticalSection;
|
||||
};
|
||||
|
||||
/** Global build queue. */
|
||||
extern MESHUTILITIES2_API FDistanceFieldAsyncQueue2* GDistanceFieldAsyncQueue2;
|
||||
|
||||
extern MESHUTILITIES2_API FString BuildDistanceFieldDerivedDataKey2(const FString& InMeshKey);
|
||||
|
||||
extern MESHUTILITIES2_API void BuildMeshDistanceField(UStaticMesh* StaticMesh);
|
||||
extern MESHUTILITIES2_API void BuildMeshCardRepresentation(UStaticMesh* StaticMeshAsset, class FStaticMeshRenderData& RenderData, FSourceMeshDataForDerivedDataTask* OptionalSourceMeshData);
|
@@ -0,0 +1,133 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
/*=============================================================================
|
||||
MeshCardRepresentation.h
|
||||
=============================================================================*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "CoreMinimal.h"
|
||||
#include "Containers/LockFreeList.h"
|
||||
#include "UObject/GCObject.h"
|
||||
#include "Templates/UniquePtr.h"
|
||||
#include "DerivedMeshDataTaskUtils.h"
|
||||
#include "DistanceFieldAtlas2.h"
|
||||
#include "Async/AsyncWork.h"
|
||||
|
||||
template <class T>
|
||||
class TLockFreePointerListLIFO;
|
||||
class FSignedDistanceFieldBuildMaterialData;
|
||||
|
||||
class FAsyncCardRepresentationTask2;
|
||||
|
||||
class FAsyncCardRepresentationTaskWorker2 : public FNonAbandonableTask
|
||||
{
|
||||
public:
|
||||
FAsyncCardRepresentationTaskWorker2(FAsyncCardRepresentationTask2& InTask)
|
||||
: Task(InTask)
|
||||
{
|
||||
}
|
||||
|
||||
FORCEINLINE TStatId GetStatId() const
|
||||
{
|
||||
RETURN_QUICK_DECLARE_CYCLE_STAT(FAsyncCardRepresentationTaskWorker2, STATGROUP_ThreadPoolAsyncTasks);
|
||||
}
|
||||
|
||||
void DoWork();
|
||||
|
||||
private:
|
||||
FAsyncCardRepresentationTask2& Task;
|
||||
};
|
||||
|
||||
class FAsyncCardRepresentationTask2
|
||||
{
|
||||
public:
|
||||
bool bSuccess = false;
|
||||
|
||||
// #if WITH_EDITOR
|
||||
TArray<FSignedDistanceFieldBuildMaterialData2> MaterialBlendModes;
|
||||
// #endif
|
||||
|
||||
FSourceMeshDataForDerivedDataTask SourceMeshData;
|
||||
bool bGenerateDistanceFieldAsIfTwoSided = false;
|
||||
UStaticMesh* StaticMesh = nullptr;
|
||||
UStaticMesh* GenerateSource = nullptr;
|
||||
FString DDCKey;
|
||||
FCardRepresentationData* GeneratedCardRepresentation;
|
||||
TUniquePtr<FAsyncTask<FAsyncCardRepresentationTaskWorker2>> AsyncTask = nullptr;
|
||||
};
|
||||
|
||||
/** Class that manages asynchronous building of mesh distance fields. */
|
||||
class MESHUTILITIES2_API FCardRepresentationAsyncQueue2 : public FGCObject
|
||||
{
|
||||
public:
|
||||
FCardRepresentationAsyncQueue2();
|
||||
|
||||
virtual ~FCardRepresentationAsyncQueue2() override;
|
||||
|
||||
/** Adds a new build task. */
|
||||
void AddTask(FAsyncCardRepresentationTask2* Task);
|
||||
|
||||
/** Cancel the build on this specific static mesh or block until it is completed if already started. */
|
||||
void CancelBuild(UStaticMesh* StaticMesh);
|
||||
|
||||
/** Blocks the main thread until the async build are either cancelled or completed. */
|
||||
void CancelAllOutstandingBuilds();
|
||||
|
||||
/** Blocks the main thread until the async build of the specified mesh is complete. */
|
||||
void BlockUntilBuildComplete(UStaticMesh* StaticMesh, bool bWarnIfBlocked);
|
||||
|
||||
/** Blocks the main thread until all async builds complete. */
|
||||
void BlockUntilAllBuildsComplete();
|
||||
|
||||
/** Called once per frame, fetches completed tasks and applies them to the scene. */
|
||||
void ProcessAsyncTasks(bool bLimitExecutionTime = false);
|
||||
|
||||
/** Exposes UObject references used by the async build. */
|
||||
void AddReferencedObjects(FReferenceCollector& Collector);
|
||||
|
||||
virtual FString GetReferencerName() const override;
|
||||
|
||||
/** Blocks until it is safe to shut down (worker threads are idle). */
|
||||
void Shutdown();
|
||||
|
||||
int32 GetNumOutstandingTasks() const
|
||||
{
|
||||
FScopeLock Lock(&CriticalSection);
|
||||
return ReferencedTasks.Num();
|
||||
}
|
||||
|
||||
private:
|
||||
friend FAsyncCardRepresentationTaskWorker2;
|
||||
void ProcessPendingTasks();
|
||||
|
||||
TUniquePtr<FQueuedThreadPool> ThreadPool;
|
||||
|
||||
/** Builds a single task with the given threadpool. Called from the worker thread. */
|
||||
void Build(FAsyncCardRepresentationTask2* Task, class FQueuedThreadPool& ThreadPool);
|
||||
|
||||
/** Change the priority of the background task. */
|
||||
void RescheduleBackgroundTask(FAsyncCardRepresentationTask2* InTask, EQueuedWorkPriority InPriority);
|
||||
|
||||
/** Task will be sent to a background worker. */
|
||||
void StartBackgroundTask(FAsyncCardRepresentationTask2* Task);
|
||||
|
||||
/** Cancel or finish any background work for the given task. */
|
||||
void CancelBackgroundTask(TArray<FAsyncCardRepresentationTask2*> Tasks);
|
||||
|
||||
/** Game-thread managed list of tasks in the async system. */
|
||||
TArray<FAsyncCardRepresentationTask2*> ReferencedTasks;
|
||||
|
||||
/** Tasks that are waiting on static mesh compilation to proceed */
|
||||
TArray<FAsyncCardRepresentationTask2*> PendingTasks;
|
||||
|
||||
/** Tasks that have completed processing. */
|
||||
TLockFreePointerListLIFO<FAsyncCardRepresentationTask2> CompletedTasks;
|
||||
|
||||
class IMeshUtilities2* MeshUtilities;
|
||||
|
||||
mutable FCriticalSection CriticalSection;
|
||||
};
|
||||
|
||||
/** Global build queue. */
|
||||
extern MESHUTILITIES2_API FCardRepresentationAsyncQueue2* GCardRepresentationAsyncQueue2;
|
@@ -0,0 +1,410 @@
|
||||
// Copyright Epic Games, Inc. All Rights Reserved.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "CoreMinimal.h"
|
||||
#include "Modules/ModuleInterface.h"
|
||||
#include "Components.h"
|
||||
#include "Engine/MeshMerging.h"
|
||||
// #include "SkelImport.h"
|
||||
#include "DistanceFieldAtlas2.h"
|
||||
#include "MeshBuild.h"
|
||||
|
||||
#include "IMeshMergeUtilities.h"
|
||||
|
||||
class UMeshComponent;
|
||||
class USkeletalMesh;
|
||||
class UStaticMesh;
|
||||
class UStaticMeshComponent;
|
||||
struct FFlattenMaterial;
|
||||
struct FRawMesh;
|
||||
struct FStaticMeshLODResources;
|
||||
class FSourceMeshDataForDerivedDataTask;
|
||||
|
||||
typedef FIntPoint FMeshIdAndLOD;
|
||||
struct FFlattenMaterial;
|
||||
struct FReferenceSkeleton;
|
||||
struct FStaticMeshLODResources;
|
||||
class UMeshComponent;
|
||||
class UStaticMesh;
|
||||
|
||||
namespace ETangentOptions2
|
||||
{
|
||||
enum Type
|
||||
{
|
||||
None = 0,
|
||||
BlendOverlappingNormals = 0x1,
|
||||
IgnoreDegenerateTriangles = 0x2,
|
||||
UseMikkTSpace = 0x4,
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Contains the vertices that are most dominated by that bone. Vertices are in Bone space.
|
||||
* Not used at runtime, but useful for fitting physics assets etc.
|
||||
*/
|
||||
struct FBoneVertInfo2
|
||||
{
|
||||
// Invariant: Arrays should be same length!
|
||||
TArray<FVector> Positions;
|
||||
TArray<FVector> Normals;
|
||||
};
|
||||
|
||||
struct FOverlappingCorners;
|
||||
|
||||
class IMeshUtilities2 : public IModuleInterface
|
||||
{
|
||||
public:
|
||||
/************************************************************************/
|
||||
/* DEPRECATED FUNCTIONALITY */
|
||||
/************************************************************************/
|
||||
|
||||
/**
|
||||
* Harvest static mesh components from input actors
|
||||
* and merge into signle mesh grouping them by unique materials
|
||||
*
|
||||
* @param SourceActors List of actors to merge
|
||||
* @param InSettings Settings to use
|
||||
* @param InOuter Outer if required
|
||||
* @param InBasePackageName Destination package name for a generated assets. Used if Outer is null.
|
||||
* @param UseLOD -1 if you'd like to build for all LODs. If you specify, that LOD mesh for source meshes will be used to merge the mesh
|
||||
* This is used by hierarchical building LODs
|
||||
* @param OutAssetsToSync Merged mesh assets
|
||||
* @param OutMergedActorLocation World position of merged mesh
|
||||
*/
|
||||
|
||||
// virtual void MergeActors(
|
||||
// const TArray<AActor*>& SourceActors,
|
||||
// const FMeshMergingSettings& InSettings,
|
||||
// UPackage* InOuter,
|
||||
// const FString& InBasePackageName,
|
||||
// TArray<UObject*>& OutAssetsToSync,
|
||||
// FVector& OutMergedActorLocation,
|
||||
// bool bSilent=false) const = 0;
|
||||
/**
|
||||
* MergeStaticMeshComponents
|
||||
*
|
||||
* @param ComponentsToMerge - Components to merge
|
||||
* @param World - World in which the component reside
|
||||
* @param InSettings - Settings to use
|
||||
* @param InOuter - Outer if required
|
||||
* @param InBasePackageName - Destination package name for a generated assets. Used if Outer is null.
|
||||
* @param UseLOD -1 if you'd like to build for all LODs. If you specify, that LOD mesh for source meshes will be used to merge the mesh
|
||||
* This is used by hierarchical building LODs
|
||||
* @param OutAssetsToSync Merged mesh assets
|
||||
* @param OutMergedActorLocation World position of merged mesh
|
||||
* @param ViewDistance Distance for LOD determination
|
||||
* @param bSilent Non-verbose flag
|
||||
* @return void
|
||||
*/
|
||||
// virtual void MergeStaticMeshComponents(
|
||||
// const TArray<UStaticMeshComponent*>& ComponentsToMerge,
|
||||
// UWorld* World,
|
||||
// const FMeshMergingSettings& InSettings,
|
||||
// UPackage* InOuter,
|
||||
// const FString& InBasePackageName,
|
||||
// TArray<UObject*>& OutAssetsToSync,
|
||||
// FVector& OutMergedActorLocation,
|
||||
// const float ScreenAreaSize,
|
||||
// bool bSilent /*= false*/) const = 0;
|
||||
|
||||
/**
|
||||
* Creates a (proxy)-mesh combining the static mesh components from the given list of actors (at the moment this requires having Simplygon)
|
||||
*
|
||||
* @param InActors - List of Actors to merge
|
||||
* @param InMeshProxySettings - Merge settings
|
||||
* @param InOuter - Package for a generated assets, if NULL new packages will be created for each asset
|
||||
* @param InProxyBasePackageName - Will be used for naming generated assets, in case InOuter is not specified ProxyBasePackageName will be used as long package name for creating new packages
|
||||
* @param InGuid - Guid identifying the data used for this proxy job
|
||||
* @param InProxyCreatedDelegate - Delegate callback for when the proxy is finished
|
||||
* @param bAllowAsync - Flag whether or not this call could be run async (SimplygonSwarm)
|
||||
*/
|
||||
// virtual void CreateProxyMesh(const TArray<class AActor*>& InActors, const struct FMeshProxySettings& InMeshProxySettings, UPackage* InOuter, const FString& InProxyBasePackageName, const FGuid InGuid, FCreateProxyDelegate InProxyCreatedDelegate, const bool bAllowAsync = false, const float ScreenAreaSize = 1.0f) = 0;
|
||||
|
||||
/**
|
||||
* FlattenMaterialsWithMeshData
|
||||
*
|
||||
* @param InMaterials - List of unique materials used by InSourceMeshes
|
||||
* @param InSourceMeshes - List of raw meshes used to flatten the materials with (vertex data)
|
||||
* @param InMaterialIndexMap - Map used for mapping the raw meshes to the correct materials
|
||||
* @param InMeshShouldBakeVertexData - Array of flags to determine whether or not a mesh requires to have its vertex data baked down
|
||||
* @param InMaterialProxySettings - Settings for creating the flattened material
|
||||
* @param OutFlattenedMaterials - List of flattened materials (one for each mesh)
|
||||
*/
|
||||
//virtual void FlattenMaterialsWithMeshData(TArray<UMaterialInterface*>& InMaterials, TArray<struct FRawMeshExt>& InSourceMeshes, TMap<FMeshIdAndLOD, TArray<int32>>& InMaterialIndexMap, TArray<bool>& InMeshShouldBakeVertexData, const FMaterialProxySettings &InMaterialProxySettings, TArray<FFlattenMaterial> &OutFlattenedMaterials) const = 0;
|
||||
|
||||
/**
|
||||
* Calculates (new) non-overlapping UV coordinates for the given Raw Mesh
|
||||
*
|
||||
* @param RawMesh - Raw Mesh to generate UV coordinates for
|
||||
* @param TextureResolution - Texture resolution to take into account while generating the UVs
|
||||
* @param bMergeIdenticalMaterials - Whether faces with identical materials can be treated as one in the resulting set of unique UVs
|
||||
* @param OutTexCoords - New set of UV coordinates
|
||||
* @return bool - whether or not generating the UVs succeeded
|
||||
*/
|
||||
//virtual bool GenerateUniqueUVsForStaticMesh(const FRawMesh& RawMesh, int32 TextureResolution, TArray<FVector2D>& OutTexCoords) const = 0;
|
||||
//virtual bool GenerateUniqueUVsForStaticMesh(const FRawMesh& RawMesh, int32 TextureResolution, bool bMergeIdenticalMaterials, TArray<FVector2D>& OutTexCoords) const = 0;
|
||||
|
||||
// /** Returns the mesh reduction plugin if available. */
|
||||
// virtual IMeshReduction* GetStaticMeshReductionInterface() = 0;
|
||||
//
|
||||
// /** Returns the mesh reduction plugin if available. */
|
||||
// virtual IMeshReduction* GetSkeletalMeshReductionInterface() = 0;
|
||||
//
|
||||
// /** Returns the mesh merging plugin if available. */
|
||||
// virtual IMeshMerging* GetMeshMergingInterface() = 0;
|
||||
public:
|
||||
/** Returns a string uniquely identifying this version of mesh utilities. */
|
||||
virtual const FString& GetVersionString() const = 0;
|
||||
|
||||
/** Used to make sure all imported material slot name are unique and non empty.
|
||||
*
|
||||
* @param StaticMesh
|
||||
* @param bForceUniqueSlotName If true, make sure all slot names are unique as well.
|
||||
*/
|
||||
virtual void FixupMaterialSlotNames(UStaticMesh* StaticMesh) const = 0;
|
||||
|
||||
/** Used to make sure all imported material slot name are unique and non empty.
|
||||
*
|
||||
* @param SkeletalMesh
|
||||
* @param bForceUniqueSlotName If true, make sure all slot names are unique as well.
|
||||
*/
|
||||
virtual void FixupMaterialSlotNames(USkeletalMesh* SkeletalMesh) const = 0;
|
||||
|
||||
/**
|
||||
* Builds a renderable static mesh using the provided source models and the LOD groups settings.
|
||||
* @returns true if the renderable mesh was built successfully.
|
||||
*/
|
||||
//virtual bool BuildStaticMesh(
|
||||
//class FStaticMeshRenderData& OutRenderData,
|
||||
//UStaticMesh* StaticMesh,
|
||||
//const class FStaticMeshLODGroup& LODGroup
|
||||
//) = 0;
|
||||
|
||||
virtual void BuildStaticMeshVertexAndIndexBuffers(
|
||||
TArray<FStaticMeshBuildVertex>& OutVertices,
|
||||
TArray<TArray<uint32> >& OutPerSectionIndices,
|
||||
TArray<int32>& OutWedgeMap,
|
||||
const FRawMesh& RawMesh,
|
||||
const FOverlappingCorners& OverlappingCorners,
|
||||
const TMap<uint32, uint32>& MaterialToSectionMapping,
|
||||
float ComparisonThreshold,
|
||||
FVector BuildScale,
|
||||
int32 ImportVersion
|
||||
) = 0;
|
||||
|
||||
/**
|
||||
* Builds a static mesh using the provided source models and the LOD groups settings, and replaces
|
||||
* the RawMeshes with the reduced meshes. Does not modify renderable data.
|
||||
* @returns true if the meshes were built successfully.
|
||||
*/
|
||||
// virtual bool GenerateStaticMeshLODs(
|
||||
// UStaticMesh* StaticMesh,
|
||||
// const class FStaticMeshLODGroup& LODGroup
|
||||
// ) = 0;
|
||||
|
||||
/** Builds a signed distance field volume for the given LODModel. */
|
||||
virtual void GenerateSignedDistanceFieldVolumeData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
float DistanceFieldResolutionScale,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
class FDistanceFieldVolumeData& OutData) = 0;
|
||||
|
||||
virtual bool GenerateCardRepresentationData(
|
||||
FString MeshName,
|
||||
const FSourceMeshDataForDerivedDataTask& SourceMeshData,
|
||||
const FStaticMeshLODResources& LODModel,
|
||||
class FQueuedThreadPool& ThreadPool,
|
||||
const TArray<FSignedDistanceFieldBuildMaterialData2>& MaterialBlendModes,
|
||||
const FBoxSphereBounds& Bounds,
|
||||
const class FDistanceFieldVolumeData* DistanceFieldVolumeData,
|
||||
bool bGenerateAsIfTwoSided,
|
||||
class FCardRepresentationData& OutData) = 0;
|
||||
|
||||
/** Helper structure for skeletal mesh import options */
|
||||
struct MeshBuildOptions
|
||||
{
|
||||
MeshBuildOptions()
|
||||
: bRemoveDegenerateTriangles(false)
|
||||
, bComputeNormals(true)
|
||||
, bComputeTangents(true)
|
||||
, bUseMikkTSpace(false)
|
||||
, bComputeWeightedNormals(false)
|
||||
{
|
||||
}
|
||||
|
||||
bool bRemoveDegenerateTriangles;
|
||||
bool bComputeNormals;
|
||||
bool bComputeTangents;
|
||||
bool bUseMikkTSpace;
|
||||
bool bComputeWeightedNormals;
|
||||
FOverlappingThresholds OverlappingThresholds;
|
||||
|
||||
void FillOptions(const FSkeletalMeshBuildSettings& SkeletalMeshBuildSettings)
|
||||
{
|
||||
OverlappingThresholds.ThresholdPosition = SkeletalMeshBuildSettings.ThresholdPosition;
|
||||
OverlappingThresholds.ThresholdTangentNormal = SkeletalMeshBuildSettings.ThresholdTangentNormal;
|
||||
OverlappingThresholds.ThresholdUV = SkeletalMeshBuildSettings.ThresholdUV;
|
||||
OverlappingThresholds.MorphThresholdPosition = SkeletalMeshBuildSettings.MorphThresholdPosition;
|
||||
bComputeNormals = SkeletalMeshBuildSettings.bRecomputeNormals;
|
||||
bComputeTangents = SkeletalMeshBuildSettings.bRecomputeTangents;
|
||||
bUseMikkTSpace = SkeletalMeshBuildSettings.bUseMikkTSpace;
|
||||
bComputeWeightedNormals = SkeletalMeshBuildSettings.bComputeWeightedNormals;
|
||||
bRemoveDegenerateTriangles = SkeletalMeshBuildSettings.bRemoveDegenerates;
|
||||
}
|
||||
};
|
||||
|
||||
// /**
|
||||
// * Create all render specific data for a skeletal mesh LOD model
|
||||
// * @returns true if the mesh was built successfully.
|
||||
// */
|
||||
// virtual bool BuildSkeletalMesh(
|
||||
// FSkeletalMeshLODModel& LODModel,
|
||||
// const FString& SkeletalMeshName,
|
||||
// const FReferenceSkeleton& RefSkeleton,
|
||||
// const TArray<SkeletalMeshImportData::FVertInfluence>& Influences,
|
||||
// const TArray<SkeletalMeshImportData::FMeshWedge>& Wedges,
|
||||
// const TArray<SkeletalMeshImportData::FMeshFace>& Faces,
|
||||
// const TArray<FVector>& Points,
|
||||
// const TArray<int32>& PointToOriginalMap,
|
||||
// const MeshBuildOptions& BuildOptions = MeshBuildOptions(),
|
||||
// TArray<FText> * OutWarningMessages = NULL,
|
||||
// TArray<FName> * OutWarningNames = NULL
|
||||
// ) = 0;
|
||||
|
||||
/** Cache optimize the index buffer. */
|
||||
virtual void CacheOptimizeIndexBuffer(TArray<uint16>& Indices) = 0;
|
||||
|
||||
/** Cache optimize the index buffer. */
|
||||
virtual void CacheOptimizeIndexBuffer(TArray<uint32>& Indices) = 0;
|
||||
|
||||
/** Build adjacency information for the skeletal mesh used for tessellation. */
|
||||
virtual void BuildSkeletalAdjacencyIndexBuffer(
|
||||
const TArray<struct FSoftSkinVertex>& VertexBuffer,
|
||||
const uint32 TexCoordCount,
|
||||
const TArray<uint32>& Indices,
|
||||
TArray<uint32>& OutPnAenIndices
|
||||
) = 0;
|
||||
|
||||
/**
|
||||
* Calculate The tangent, bi normal and normal for the triangle define by the tree SoftSkinVertex.
|
||||
*
|
||||
* @note The function will always fill properly the OutTangents array with 3 FVector. If the triangle is degenerated the OutTangent will contain zeroed vectors.
|
||||
*
|
||||
* @param VertexA - First triangle vertex.
|
||||
* @param VertexB - Second triangle vertex.
|
||||
* @param VertexC - Third triangle vertex.
|
||||
* @param OutTangents - The function allocate the TArray with 3 FVector, to represent the triangle tangent, bi normal and normal.
|
||||
* @param CompareThreshold - The threshold use to compare a tangent vector with zero.
|
||||
*/
|
||||
virtual void CalculateTriangleTangent(const FSoftSkinVertex& VertexA, const FSoftSkinVertex& VertexB, const FSoftSkinVertex& VertexC, TArray<FVector>& OutTangents, float CompareThreshold) = 0;
|
||||
|
||||
/**
|
||||
* Calculate the verts associated weighted to each bone of the skeleton.
|
||||
* The vertices returned are in the local space of the bone.
|
||||
*
|
||||
* @param SkeletalMesh The target skeletal mesh.
|
||||
* @param Infos The output array of vertices associated with each bone.
|
||||
* @param bOnlyDominant Controls whether a vertex is added to the info for a bone if it is most controlled by that bone, or if that bone has ANY influence on that vert.
|
||||
*/
|
||||
virtual void CalcBoneVertInfos( USkeletalMesh* SkeletalMesh, TArray<FBoneVertInfo2>& Infos, bool bOnlyDominant) = 0;
|
||||
|
||||
/**
|
||||
* Convert a set of mesh components in their current pose to a static mesh.
|
||||
* @param InMeshComponents The mesh components we want to convert
|
||||
* @param InRootTransform The transform of the root of the mesh we want to output
|
||||
* @param InPackageName The package name to create the static mesh in. If this is empty then a dialog will be displayed to pick the mesh.
|
||||
* @return a new static mesh (specified by the user)
|
||||
*/
|
||||
virtual UStaticMesh* ConvertMeshesToStaticMesh(const TArray<UMeshComponent*>& InMeshComponents, const FTransform& InRootTransform = FTransform::Identity, const FString& InPackageName = FString()) = 0;
|
||||
|
||||
/**
|
||||
* Calculates UV coordinates bounds for the given Skeletal Mesh
|
||||
*
|
||||
* @param InRawMesh - Skeletal Mesh to calculate the bounds for
|
||||
* @param OutBounds - Out texture bounds (min-max)
|
||||
*/
|
||||
//virtual void CalculateTextureCoordinateBoundsForSkeletalMesh(const FSkeletalMeshLODModel& LODModel, TArray<FBox2D>& OutBounds) const = 0;
|
||||
|
||||
/** Calculates (new) non-overlapping UV coordinates for the given Skeletal Mesh
|
||||
*
|
||||
* @param LODModel - Skeletal Mesh to generate UV coordinates for
|
||||
* @param TextureResolution - Texture resolution to take into account while generating the UVs
|
||||
* @param OutTexCoords - New set of UV coordinates
|
||||
* @return bool - whether or not generating the UVs succeeded
|
||||
*/
|
||||
//virtual bool GenerateUniqueUVsForSkeletalMesh(const FSkeletalMeshLODModel& LODModel, int32 TextureResolution, TArray<FVector2D>& OutTexCoords) const = 0;
|
||||
|
||||
/**
|
||||
* Remove Bones based on LODInfo setting
|
||||
*
|
||||
* @param SkeletalMesh Mesh that needs bones to be removed
|
||||
* @param LODIndex Desired LOD to remove bones [ 0 based ]
|
||||
* @param BoneNamesToRemove List of bone names to remove
|
||||
*
|
||||
* @return true if success
|
||||
*/
|
||||
virtual bool RemoveBonesFromMesh(USkeletalMesh* SkeletalMesh, int32 LODIndex, const TArray<FName>* BoneNamesToRemove) const = 0;
|
||||
|
||||
/**
|
||||
* Calculates Tangents and Normals for a given set of vertex data
|
||||
*
|
||||
* @param InVertices Vertices that make up the mesh
|
||||
* @param InIndices Indices for the Vertex array
|
||||
* @param InUVs Texture coordinates (per-index based)
|
||||
* @param InSmoothingGroupIndices Smoothing group index (per-face based)
|
||||
* @param InTangentOptions Flags for Tangent calculation
|
||||
* @param OutTangentX Array to hold calculated Tangents
|
||||
* @param OutTangentY Array to hold calculated Bitangents
|
||||
* @param OutNormals Array to hold calculated normals (if already contains normals will use those instead for the tangent calculation)
|
||||
*/
|
||||
virtual void CalculateTangents(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<uint32>& InSmoothingGroupIndices, const uint32 InTangentOptions, TArray<FVector>& OutTangentX, TArray<FVector>& OutTangentY, TArray<FVector>& OutNormals) const = 0;
|
||||
|
||||
/**
|
||||
* Calculates MikkTSpace Tangents for a given set of vertex data with normals provided
|
||||
*
|
||||
* @param InVertices Vertices that make up the mesh
|
||||
* @param InIndices Indices for the Vertex array
|
||||
* @param InUVs Texture coordinates (per-index based)
|
||||
* @param InNormals Normals used for the tangent calculation (must be normalized)
|
||||
* @param bIgnoreDegenerateTriangles Flag for MikkTSpace to skip degenerate triangles fix-up path
|
||||
* @param OutTangentX Array to hold calculated Tangents
|
||||
* @param OutTangentY Array to hold calculated Bitangents
|
||||
*/
|
||||
virtual void CalculateMikkTSpaceTangents(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<FVector>& InNormals, bool bIgnoreDegenerateTriangles, TArray<FVector>& OutTangentX, TArray<FVector>& OutTangentY) const = 0;
|
||||
|
||||
/**
|
||||
* Calculates Normals for a given set of vertex data
|
||||
*
|
||||
* @param InVertices Vertices that make up the mesh
|
||||
* @param InIndices Indices for the Vertex array
|
||||
* @param InUVs Texture coordinates (per-index based)
|
||||
* @param InSmoothingGroupIndices Smoothing group index (per-face based)
|
||||
* @param InTangentOptions Flags for Tangent calculation
|
||||
* @param OutNormals Array to hold calculated normals
|
||||
*/
|
||||
//virtual void CalculateNormals(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, const TArray<FVector2D>& InUVs, const TArray<uint32>& InSmoothingGroupIndices, const uint32 InTangentOptions, TArray<FVector>& OutNormals) const = 0;
|
||||
|
||||
/**
|
||||
* Calculates the overlapping corners for a given set of vertex data
|
||||
*
|
||||
* @param InVertices Vertices that make up the mesh
|
||||
* @param InIndices Indices for the Vertex array
|
||||
* @param bIgnoreDegenerateTriangles Indicates if we should skip degenerate triangles
|
||||
* @param OutOverlappingCorners Container to hold the overlapping corners. For a vertex, lists all the overlapping vertices.
|
||||
*/
|
||||
virtual void CalculateOverlappingCorners(const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, bool bIgnoreDegenerateTriangles, FOverlappingCorners& OutOverlappingCorners) const = 0;
|
||||
|
||||
virtual void RecomputeTangentsAndNormalsForRawMesh(bool bRecomputeTangents, bool bRecomputeNormals, const FMeshBuildSettings& InBuildSettings, FRawMesh &OutRawMesh) const = 0;
|
||||
virtual void RecomputeTangentsAndNormalsForRawMesh(bool bRecomputeTangents, bool bRecomputeNormals, const FMeshBuildSettings& InBuildSettings, const FOverlappingCorners& InOverlappingCorners, FRawMesh &OutRawMesh) const = 0;
|
||||
|
||||
virtual void FindOverlappingCorners(FOverlappingCorners& OutOverlappingCorners, const TArray<FVector>& InVertices, const TArray<uint32>& InIndices, float ComparisonThreshold) const = 0;
|
||||
|
||||
/** Used to generate runtime skin weight data from Editor-only data */
|
||||
// virtual void GenerateRuntimeSkinWeightData(const FSkeletalMeshLODModel* ImportedModel, const TArray<FRawSkinWeight>& InRawSkinWeights, struct FRuntimeSkinWeightProfileData& InOutSkinWeightOverrideData) const = 0;
|
||||
};
|
Reference in New Issue
Block a user